期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Heterointerface engineering of rhombic Rh nanosheets confined on MXene for efficient methanol oxidation
1
作者 Qi Zhang Quanguo Jiang +6 位作者 Xiang Yang Chi Zhang Jian Zhang Lu Yang Haiyan He guobing ying Huajie Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期419-428,I0011,共11页
Although metallic rhodium(Rh)is regarded as a promising platinum-alternative anode catalyst of direct methanol fuel cell(DMFC),the conventional"particle-to-face"contact model between Rh and matrix largely li... Although metallic rhodium(Rh)is regarded as a promising platinum-alternative anode catalyst of direct methanol fuel cell(DMFC),the conventional"particle-to-face"contact model between Rh and matrix largely limits the overall electrocatalytic performance due to their insufficient cooperative effects.Herein,we report a controllable and robust heterointerface engineering strategy for the bottom-up fabrication of rhombic Rh nanosheets in situ confined on Ti_3C_(2)T_x MXene nanolamellas(Rh NS/MXene)via a convenient stereoassembly process.This unique design concept gives the resulting 2D/2D Rh NS/MXene heterostructure intriguing textural features,including large accessible surface areas,strong"face-toface"interfacial interactions,homogeneous Rh nanosheet distribution,ameliorative electronic structure,and high electronic conductivity.As a consequence,the as-prepared Rh NS/MXene nanoarchitectures exhibit exceptional electrocatalytic methanol oxidation properties in terms of a large electrochemically active surface area of 126.2 m~2 g_(Rh)~(-1),a high mass activity of 1056.9 mA mg_(Rh)-~1,and a long service life,which significantly outperform those of conventional particle-shaped Rh catalysts supported by carbon black,carbon nanotubes,reduced graphene oxide,and MXene matrixes as well as the commercial Pt nanoparticle/carbon black and Pd nanoparticle/carbon black catalysts with the same noble metal loading amount.Density functional theory calculations further demonstrate that the direct electronic interaction at the well-contacted 2D/2D heterointerfaces effectively enhances the adsorption energy of Rh nanosheets and induces a left shift of the d-band center,thereby making the Rh NS/MXene configuration suffer less from CO poisoning.This work highlights the importance of rational heterointerface design in the construction of advanced noble metal/MXene electrocatalysts,which may provide new avenues for developing the next-generation DMFC devices. 展开更多
关键词 Rhodium nanosheet Ti_(3)C_(2)T_(x)MXene HETEROINTERFACE ELECTROCATALYST Fuel cell
下载PDF
Is Mg_(17)Al_(12) ductile or brittle?A theoretical insight
2
作者 Jiajia Wang Lei Niu +7 位作者 Yanglin Zhang Jianqing Chen Jinghua Jiang Dan Song Baosong Li guobing ying Jiangbo Cheng Aibin Ma 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期936-944,共9页
The Mg_(17)Al_(12)-phase,which is common and important in Mg-Al alloy,has long been regarded as a brittle phase in experiments but theoretical calculations report controversial results.To unravel why theoretical calcu... The Mg_(17)Al_(12)-phase,which is common and important in Mg-Al alloy,has long been regarded as a brittle phase in experiments but theoretical calculations report controversial results.To unravel why theoretical calculations report controversial results and determine whether Mg_(17)Al_(12)is brittle or ductile,density functional theory calculations on atomic level are performed to investigate mechanic properties of Mg_(17)Al_(12)without containing alloying elements and without taking the size effect.The results showed that the parameter k-point played critical role in the DFT-based elastic calculations.The convergent G/B ratio of Mg_(17)Al_(12)was about 0.52,suggesting that the Mg_(17)Al_(12)-phase was theoretically ductile although its ductility was poor.The chemical bonding in Mg_(17)Al_(12)was the mixture of metallic Mg-Mg bond and covalent Al-Al bond.The advantage of metallic bonding over covalent bonding provided a possible explanation for the ductility of Mg_(17)Al_(12).Possible reasons for the brittleness of Mg_(17)Al_(12)in experiments are also discussed. 展开更多
关键词 Mg_(17)Al_(12) DUCTILE BRITTLE DFT Elastic properties
下载PDF
Ultra-high-temperature application of MXene: Stabilization of 2D Ti_(3)C_(2)T_(x) for cross-scale strengthening and toughening of 3D TiC
3
作者 Lu Liu guobing ying +6 位作者 Quanguo Jiang Dong Wen Peng Wang Meng Wu Ziying Ji Yongting Zheng Xiang Wang 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第1期1-10,共10页
Transition metal carbide/nitride cores within MXenes make them considerably useful for ultra-high-temperature reinforcement.However,extensive research on Ti_(3)C_(2)T_(x) MXene has revealed its tendency to undergo a p... Transition metal carbide/nitride cores within MXenes make them considerably useful for ultra-high-temperature reinforcement.However,extensive research on Ti_(3)C_(2)T_(x) MXene has revealed its tendency to undergo a phase transition to TiCy at temperatures above 800℃due to high activity of a superficial Ti atomic layer.Herein,spark plasma sintering of Ti_(3)C_(2)T_(x) and TiC is performed to prevent the Ti_(3)C_(2)T_(x) phase transition at temperatures up to 1900℃through the fabrication of composites at a pressure of 50 MPa.Using a focused ion beam scanning electron microscope to separate layered substances in the composites and examining selected area diffraction spots in a transmission electron microscope enabled identification of non-phase-transitioned MXene.First-principles calculations based on density functional theory indicated the formation of strong chemical bonding interfaces between Ti_(3)C_(2)T_(x) and TiC,which imposed a stability constraint on the Ti atomic layer at the Ti_(3)C_(2)T_(x) surface.Mechanical performance tests,such as three-point bending and fracture toughness analysis,demonstrated that the addition of Ti_(3)C_(2)T_(x) can effectively improve the cross-scale strengthening and toughening of the TiC matrix,providing a new path for designing and developing two-dimensional(2D)carbides cross-scale-enhanced three-dimensional(3D)carbides with the same elements relying on a wide variety of MXenes. 展开更多
关键词 MXene ultra-high-temperature phase stability interface bonding cross-scale strengthening and toughening structural ceramic composites
原文传递
From structural ceramics to 2D materials with multi-applications:A review on the development from MAX phases to MXenes 被引量:15
4
作者 Aiguo ZHOU Yi LIU +4 位作者 Shibo LI Xiaohui WANG guobing ying Qixun XIA Peigen ZHANG 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第6期1194-1242,共49页
MAX phases(Ti_(3)SiC_(2),Ti_(3)AIC_(2),V_(2)AlC,TiqAlN_(3),etc.)are layered ternary carbides/nitrides,which are generally processed and researched as structure ceramics.Selectively removing A layer from MAX phases,MXe... MAX phases(Ti_(3)SiC_(2),Ti_(3)AIC_(2),V_(2)AlC,TiqAlN_(3),etc.)are layered ternary carbides/nitrides,which are generally processed and researched as structure ceramics.Selectively removing A layer from MAX phases,MXenes(Ti_(3)C_(2),V_(2)C,Mo_(2)C,etc.)with two-dimensional(2D)structure can be prepared.The MXenes are electrically conductive and hydrophilic,which are promising as functional materials in many areas.This article reviews the milestones and the latest progress in the research of MAX phases and MXenes,from the perspective of ceramic science.Especially,this article focuses on the conversion from MAX phases to MXenes.First,we summarize the microstructure,preparation,properties,and applications of MAX phases.Among the various properties,the crack healing properties of MAX phase are highlighted.Thereafter,the critical issues on MXene research,including the preparation process,microstructure,MXene composites,and application of MXenes,are reviewed.Among the various applications,this review focuses on two selected applications:energy storage and electromagnetic interference shielding.Moreover,new research directions and future trends on MAX phases and MXenes are also discussed. 展开更多
关键词 MAX phases MXenes Ti_(3)SiC_(2) Ti_(3)C_(2)Tv
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部