Background: To identify PTEN isoform and explore its potential role in tumor suppression. Methods: Western blotting, over-expression, shRNA mediated knocking-down, and bioinformatic analysis were used to identify PT...Background: To identify PTEN isoform and explore its potential role in tumor suppression. Methods: Western blotting, over-expression, shRNA mediated knocking-down, and bioinformatic analysis were used to identify PTEN isoform and test its effect on PI3K-Akt signaling pathway. Cell proliferation, apoptosis, and migration assays were used to test PTEN isoform's biological activities. Results: The PTEN isoform is about 15 kDa bigger than PTEN and its expression is dependent on PTEN status. Immunoprecipitation for PTEN isoform followed by screening with antibodies against ISG15, SUMO1/2/3, Ubiquitin, and Nedd8 showed the identified PTEN isoform is not a general proteinaceous post-translational modification. In addition, overexpression of PTEN cDNA in cells did not generate PTEN isoform whereas knocking-down of PTEN reduced the protein levels of both PTEN and PTEN isoform in a proportional manner. Analysis of PTEN DNA sequence disclosed an alternative translational starting code (CTG) upstream of canonical PTEN coding sequence. Expression of cloned PTEN isoform generated a protein with a size about 15 kDa bigger than PTEN and suppressed PI3K-Akt signaling pathway in cells. Overexpression of PTEN isoform also led to decrease in cell growth and enhanced serum starvation--and UV irradiation--induced apoptosis through activation of Caspase 3. Finally, expression of PTEN isoform inhibited cell migration in scratch assay. Conclusions: PTEN isoform has PTEN-Iike activity and might be a new tumor suppressor.展开更多
基金Advanced key Scientific and Technological Programs of Ningbo(2013C51009)National Natural Science Foundation of China(31271451)
文摘Background: To identify PTEN isoform and explore its potential role in tumor suppression. Methods: Western blotting, over-expression, shRNA mediated knocking-down, and bioinformatic analysis were used to identify PTEN isoform and test its effect on PI3K-Akt signaling pathway. Cell proliferation, apoptosis, and migration assays were used to test PTEN isoform's biological activities. Results: The PTEN isoform is about 15 kDa bigger than PTEN and its expression is dependent on PTEN status. Immunoprecipitation for PTEN isoform followed by screening with antibodies against ISG15, SUMO1/2/3, Ubiquitin, and Nedd8 showed the identified PTEN isoform is not a general proteinaceous post-translational modification. In addition, overexpression of PTEN cDNA in cells did not generate PTEN isoform whereas knocking-down of PTEN reduced the protein levels of both PTEN and PTEN isoform in a proportional manner. Analysis of PTEN DNA sequence disclosed an alternative translational starting code (CTG) upstream of canonical PTEN coding sequence. Expression of cloned PTEN isoform generated a protein with a size about 15 kDa bigger than PTEN and suppressed PI3K-Akt signaling pathway in cells. Overexpression of PTEN isoform also led to decrease in cell growth and enhanced serum starvation--and UV irradiation--induced apoptosis through activation of Caspase 3. Finally, expression of PTEN isoform inhibited cell migration in scratch assay. Conclusions: PTEN isoform has PTEN-Iike activity and might be a new tumor suppressor.