Broadband electroluminescence based on environment-friendly emitters is promising for healthy lighting yet remains an unprecedented challenge to progress.The copper halide-based emitters are competitive candidates for...Broadband electroluminescence based on environment-friendly emitters is promising for healthy lighting yet remains an unprecedented challenge to progress.The copper halide-based emitters are competitive candidates for broadband emission,but their high-performance electroluminescence shows inadequate broad emission bandwidth of less than 90 nm.Here,we demonstrate efficient ultra-broadband electroluminescence from a copper halide(CuI)nanocluster single emitter prepared by a one-step solution synthesis-deposition process,through dedicated design of ligands and subtle selection of solvents.The CuI nanocluster exhibits high rigidity in the excitation state as well as dual-emissive modes of phosphorescence and temperature-activated delayed fluorescence,enabling the uniform cluster-composed film to show excellent stability and high photoluminescent efficiency.In consequence,ultra-broadband light-emitting diodes(LEDs)present nearly identical performance in an inert or air atmosphere without encapsulation and outstanding high-temperature operation performance,reaching an emission full width at half maximum(FWHM)of~120 nm,a peak external quantum efficiency of 13%,a record maximum luminance of~50,000 cd m^(−2),and an operating half-lifetime of 137 h at 100 cd m^(−2).The results highlight the potential of copper halide nanoclusters for next-generation healthy lighting.展开更多
Halide perovskite light emitting diodes(LEDs)have gained great progress in recent years.However,mixed-halide perovskites for blue LEDs usually suffer from electroluminescence(EL)spectra shift at a high applied voltage...Halide perovskite light emitting diodes(LEDs)have gained great progress in recent years.However,mixed-halide perovskites for blue LEDs usually suffer from electroluminescence(EL)spectra shift at a high applied voltage or current density,limiting their efficiency.In this work,we report a strategy of using single-layer perovskite quantum dots(QDs)film to tackle the electroluminescence spectra shift in pure-blue perovskite LEDs and improve the LED efficiency by co-doping copper and potassium in the mixed-halide perovskite QDs.As a result,we obtained pure-blue halide perovskite QD-LEDs with stable EL spectra centred at 469 nm even at a current density of 1,617 mA·cm^(−2).The optimal device presents a maximum external quantum efficiency(EQE)of 2.0%.The average maximum EQE and luminance of the LEDs are 1.49%and 393 cd·m^(−2),increasing 62%and 66%compared with the control LEDs.Our study provides an effective strategy for achieving spectra-stable and highly efficient pure-blue perovskite LEDs.展开更多
基金the Fundamental Research Funds for the Central Universities(17241022301)the National Natural Science Foundation of China(52102188)+3 种基金the Key Research and Development Program of Zhejiang Province(2021C01030)Natural Science Foundation of Zhejiang Province(LQ21F040005)Science and Technology projects of the Institute of Wenzhou,Zhejiang University(XMGL-KJZX-202302)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2022SZ-TD004)。
文摘Broadband electroluminescence based on environment-friendly emitters is promising for healthy lighting yet remains an unprecedented challenge to progress.The copper halide-based emitters are competitive candidates for broadband emission,but their high-performance electroluminescence shows inadequate broad emission bandwidth of less than 90 nm.Here,we demonstrate efficient ultra-broadband electroluminescence from a copper halide(CuI)nanocluster single emitter prepared by a one-step solution synthesis-deposition process,through dedicated design of ligands and subtle selection of solvents.The CuI nanocluster exhibits high rigidity in the excitation state as well as dual-emissive modes of phosphorescence and temperature-activated delayed fluorescence,enabling the uniform cluster-composed film to show excellent stability and high photoluminescent efficiency.In consequence,ultra-broadband light-emitting diodes(LEDs)present nearly identical performance in an inert or air atmosphere without encapsulation and outstanding high-temperature operation performance,reaching an emission full width at half maximum(FWHM)of~120 nm,a peak external quantum efficiency of 13%,a record maximum luminance of~50,000 cd m^(−2),and an operating half-lifetime of 137 h at 100 cd m^(−2).The results highlight the potential of copper halide nanoclusters for next-generation healthy lighting.
基金the National Natural Science Foundation of China(Nos.52102188 and 52072337)the Key Research and Development Program of Zhejiang Province(No.2021C01030)+4 种基金the Natural Science Foundation of Zhejiang Province(No.LQ21F040005)the Postdoctoral Science Foundation of Zhejiang Province(No.ZJ2022132)the Science and Technology Project of Wenzhou(No.2022G0253)the Leading Talent Entrepreneurship Project of Ouhai District,Wenzhou City,the Young Elite Scientists Sponsorship Program by CAST(No.YESS20210444)the Shanxi‐Zheda Institute of Advanced Materials and Chemical Engineering(No.2022SZ‐TD004).
文摘Halide perovskite light emitting diodes(LEDs)have gained great progress in recent years.However,mixed-halide perovskites for blue LEDs usually suffer from electroluminescence(EL)spectra shift at a high applied voltage or current density,limiting their efficiency.In this work,we report a strategy of using single-layer perovskite quantum dots(QDs)film to tackle the electroluminescence spectra shift in pure-blue perovskite LEDs and improve the LED efficiency by co-doping copper and potassium in the mixed-halide perovskite QDs.As a result,we obtained pure-blue halide perovskite QD-LEDs with stable EL spectra centred at 469 nm even at a current density of 1,617 mA·cm^(−2).The optimal device presents a maximum external quantum efficiency(EQE)of 2.0%.The average maximum EQE and luminance of the LEDs are 1.49%and 393 cd·m^(−2),increasing 62%and 66%compared with the control LEDs.Our study provides an effective strategy for achieving spectra-stable and highly efficient pure-blue perovskite LEDs.