The tendril is a climbing organ in cucurbits and functions in physical support and to avoid shading by neighboring vegetation.However,how cucurbits produce tendrils to obtain climbing ability is largely unknown.In thi...The tendril is a climbing organ in cucurbits and functions in physical support and to avoid shading by neighboring vegetation.However,how cucurbits produce tendrils to obtain climbing ability is largely unknown.In this study,tendril phenotypes were investigated during different developmental stages.Our results revealed that tendril growth exhibited an age-dependent pattern in cucurbits.Tendril growth was inhibited,and the tendril was formed as a short tendril[nonfunctional tendril(nonF-tendril),approximately 0.1 cm]during the seedling stage.In contrast,enhanced cell proliferation and cell expansion led to rapid elongation of the tendril during the climbing stage,and the tendril formed as a functional tendril(F-tendril,approximately 30 cm)to obtain climbing ability.RT-qPCR detection showed that age-dependent tendril growth correlated negatively with the abundance of the conserved age regulator CsmiR156.Defoliation induced CsmiR156 to inhibit CsSPLs,and F-tendril formation and climbing ability were delayed in defoliated cucumbers,which confirmed the role of CsmiR156 in regulating tendril growth in vivo.Additionally,exogenous gibberellin(GA)treatment showed that GA positively regulated tendril growth,and RT-qPCR detection showed that the GA bio-synthetic genes and metabolic genes were affected by age pathway,suggesting that the age pathway depended on GA bio-synthetic and metabolic pathway to regulate cell expansion to determine tendril growth.In summary,our work reveals that change in tendril type is an important marker of phase transition in cucumber,and tendril growth is regulated by an intrinsic developmental age signal,ensuring that the cucumber obtains climbing ability at a suitable age.展开更多
Disparities in the substrate affinity and tolerance threshold for ammonia have been believed to play a key role in driving niche differentiation between ammonia-oxidizing archaea (AOA) and bacteria (AOB);however, rece...Disparities in the substrate affinity and tolerance threshold for ammonia have been believed to play a key role in driving niche differentiation between ammonia-oxidizing archaea (AOA) and bacteria (AOB);however, recent surveys argue that direct competition between AOA and AOB is also important in this phenomenon. Accordingly, it is reasonable to predict that diverse AOA lineages would grow in ammonium (NH_(4)^(+))-rich alkaline arable soils if AOB growth is suppressed. To test this hypothesis, a microcosm study was established using three different types of alkaline arable soils, in which a high NH_(4)^(+) concentration (200 μg N g^(-1) dry soil) was maintained by routinely replenishing urea and the activities of AOB were selectively inhibited by 1-octyne or 3,4-dimethylpyrazole phosphate (DMPP). Compared with amendment with urea alone, 1-octyne partially retarded AOB growth, while DMPP completely inhibited AOB. Both inhibitors accelerated the growth of AOA, with significantly higher ratios of abundance of AOA to AOB observed with DMPP amendment across soils. Nonmetric multidimensional scaling analysis (NMDS) indicated that different treatments significantly altered the community structures of both AOA and AOB and AOA OTUs enriched by high-NH_(4)^(+) amendment were taxonomically constrained across the soils tested and closely related to Nitrososphaera viennensis EN76 and N. garnensis. Given that these representative strains have been demonstrated to be sensitive to high ammonia concentrations, our results suggest that it is the competitiveness for ammonia, rather than disparities in substrate affinity and tolerance threshold for ammonia, that drives niche differentiation between these phylotypes and AOB in NH_(4)^(+)-rich alkaline soils.展开更多
基金supported by the Natural Science Foundation of Zhejiang province(Grant Nos.LZ20C150001,LY21C150002)National Natural Science Foundation of China(Grant No.32202583).
文摘The tendril is a climbing organ in cucurbits and functions in physical support and to avoid shading by neighboring vegetation.However,how cucurbits produce tendrils to obtain climbing ability is largely unknown.In this study,tendril phenotypes were investigated during different developmental stages.Our results revealed that tendril growth exhibited an age-dependent pattern in cucurbits.Tendril growth was inhibited,and the tendril was formed as a short tendril[nonfunctional tendril(nonF-tendril),approximately 0.1 cm]during the seedling stage.In contrast,enhanced cell proliferation and cell expansion led to rapid elongation of the tendril during the climbing stage,and the tendril formed as a functional tendril(F-tendril,approximately 30 cm)to obtain climbing ability.RT-qPCR detection showed that age-dependent tendril growth correlated negatively with the abundance of the conserved age regulator CsmiR156.Defoliation induced CsmiR156 to inhibit CsSPLs,and F-tendril formation and climbing ability were delayed in defoliated cucumbers,which confirmed the role of CsmiR156 in regulating tendril growth in vivo.Additionally,exogenous gibberellin(GA)treatment showed that GA positively regulated tendril growth,and RT-qPCR detection showed that the GA bio-synthetic genes and metabolic genes were affected by age pathway,suggesting that the age pathway depended on GA bio-synthetic and metabolic pathway to regulate cell expansion to determine tendril growth.In summary,our work reveals that change in tendril type is an important marker of phase transition in cucumber,and tendril growth is regulated by an intrinsic developmental age signal,ensuring that the cucumber obtains climbing ability at a suitable age.
基金supported by the National Key Research and Development Program of China(Nos.2017YFD0200707 and 2017YFD0200102)the Fundamental Research Funds for the Central Universities of China(No.2019FZJD007)for Yongchao LIANGthe National Natural Science Foundation of China(No.31800418)for Chang YIN.
文摘Disparities in the substrate affinity and tolerance threshold for ammonia have been believed to play a key role in driving niche differentiation between ammonia-oxidizing archaea (AOA) and bacteria (AOB);however, recent surveys argue that direct competition between AOA and AOB is also important in this phenomenon. Accordingly, it is reasonable to predict that diverse AOA lineages would grow in ammonium (NH_(4)^(+))-rich alkaline arable soils if AOB growth is suppressed. To test this hypothesis, a microcosm study was established using three different types of alkaline arable soils, in which a high NH_(4)^(+) concentration (200 μg N g^(-1) dry soil) was maintained by routinely replenishing urea and the activities of AOB were selectively inhibited by 1-octyne or 3,4-dimethylpyrazole phosphate (DMPP). Compared with amendment with urea alone, 1-octyne partially retarded AOB growth, while DMPP completely inhibited AOB. Both inhibitors accelerated the growth of AOA, with significantly higher ratios of abundance of AOA to AOB observed with DMPP amendment across soils. Nonmetric multidimensional scaling analysis (NMDS) indicated that different treatments significantly altered the community structures of both AOA and AOB and AOA OTUs enriched by high-NH_(4)^(+) amendment were taxonomically constrained across the soils tested and closely related to Nitrososphaera viennensis EN76 and N. garnensis. Given that these representative strains have been demonstrated to be sensitive to high ammonia concentrations, our results suggest that it is the competitiveness for ammonia, rather than disparities in substrate affinity and tolerance threshold for ammonia, that drives niche differentiation between these phylotypes and AOB in NH_(4)^(+)-rich alkaline soils.