期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Transcriptome analysis of Saposhnikovia divaricata and mining of bolting and fowering genes
1
作者 Min Zhang Wenle Wang +4 位作者 Qian Liu Erhuan Zang Lijun Wu guofa hu Minhui Li 《Chinese Herbal Medicines》 CAS 2023年第4期574-587,共14页
Objective: Early bolting of Saposhnikovia divaricata has seriously hindered its medicinal value and sustainable development of resources. The molecular mechanism of bolting and fowering of S. divaricata is still uncle... Objective: Early bolting of Saposhnikovia divaricata has seriously hindered its medicinal value and sustainable development of resources. The molecular mechanism of bolting and fowering of S. divaricata is still unclear and worth of research. In our study, we explored the transcriptome of the genes related to the bolting and fowering of S. divaricata.Methods: The transcriptome library was constructed, sequenced, assembled and annotated from the bolting and unbolting leaves of S. divaricata by high-throughput sequencing at the bud and fowering stage.Focus on the pathways related to bolting and fowering in plants, and exploring genes. The expression of seven candidate genes was verified by real-time fuorescence quantitative PCR(qRT-PCR).Results: Transcriptome results showed that 249 889 422 high-quality clean reads were obtained. A total of 67 866 unigenes were assembled with an average length of 948.1 bp. Trinity de Novo assembly produced 67 866 unigenes with an average length of 948.1 bp. Among 993 differentially expressed genes,484 genes were significantly up-regulated and 509 genes were down-regulated in the SdM group. A total of 79 GO terms were significantly enriched for differentially expressed genes. KEGG results showed that 11 154 unigenes were enriched in 89 pathways. And 21 candidate genes related to bolting and fowering of S. divaricata were excavated. The qRT-PCR results showed that expression trends of HDA9, PHYB, AP2,TIR1, Hsp90, CaM, and IAA7 were consistent with transcriptomic sequencing results. In addition, RNA-seq had identified 10 740 transcription factors and classified them into 58 families by their conserved domains. Further studies showed that the transcription factors regulating the fowering of S. divaricata were mainly distributed in the NAC, MYB_related, HB-other, ARF, and AP2 families.Conclusion: Based on the results of this study, it was found that the plant hormone signal transduction pathway was one of the decisive factors to control bolting and fowering. Among them, auxin related genes IAA and TIR1 are the key genes in the bolting and fowering process of S. divaricata. 展开更多
关键词 bolting and bloom comparative analysis flowering genes Saposhnikovia divaricata(Turcz.)Schischk TRANSCRIPTOME
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部