Despite the rapid development of probes for targeting single organelle, the construction of robust dual-organelle targeting probes with multicolor emission was rarely reported. Herein, two dual-emissive aggregation-in...Despite the rapid development of probes for targeting single organelle, the construction of robust dual-organelle targeting probes with multicolor emission was rarely reported. Herein, two dual-emissive aggregation-induced emission luminogens(AIEgens)with donor-π-acceptor structures were designed and synthesized, namely QT-1 and QF-2. Both two AIEgens exhibited excitation wavelength-dependence defying the Kasha's rule, and could stain lipid droplets(LDs) and mitochondria in blue and red fluorescence, respectively. Moreover, thanks to the near-infrared emission and abundant reactive oxygen species(ROS) generation efficiency of QT-1, it was chosen as a photodynamic therapy agent to selectively kill cancer cells from normal cells. Upon light irradiation, an obvious decrease of mitochondrial membrane potential(MMP) and serious change of mitochondrial shape in cells were observed, which corresponded to the efficient inhibition of tumor growth in vivo. This work afforded a promising strategy for the construction of multicolor emission by tuning anti-Kasha behaviors and expanding their application in dualorganelle targeting-based phototheranostics.展开更多
Organic and inorganic clusteroluminescence have attracted great attention while the underlying mechanisms is still not well understood.Here,we employed a series of ancient inorganic complexes platinocyanides with aggr...Organic and inorganic clusteroluminescence have attracted great attention while the underlying mechanisms is still not well understood.Here,we employed a series of ancient inorganic complexes platinocyanides with aggregation-induced emission property to elucidate the mechanism of clusteroluminescence including how does the chromophore form and how does the solid structures influence the luminescence behaviors.The results indicate that the isolated platinocyanide cannot work as a chromophore to emit visible light,while their clusterization at aggregate state can trigger the d-orbitals coupling of the platinum atoms to facilitate the electron exchange and delocalization to form a new chromophore to emit visible light.Furthermore,the counter ions and H2O ligands help to rigidify the three-dimensional network structure of the platinocyanides to suppress the excited state nonradiative decay,resulting in the high quantum yield of up to 96%.This work fundamentally helps understanding both the organic and inorganic clusteroluminescence phenomenon.展开更多
基金financially supported by the National Natural Science Foundation of China(NSFC)(22371033,22175033,and 22266028)the Outstanding Young Technology Talent Foundation of Jilin Province(20230508108RC)+4 种基金the Fundamental Research Funds for the Central Universities(2412019FZ007)the Natural Science Foundation of Hainan Province(823MS062)the Foundation of Xinzhou Teachers University(2021KY07)the Science and Technology Innovation Project of Higher Education in Shanxi Province(2021L450)the Youth Science Research Project of Shanxi Province(202103021223362)。
基金supported by the National Natural Science Foundation of China (52173152, 21805002)Guangdong Basic and Applied Basic Research Foundation (2020A1515110476)+7 种基金the Fund of the Rising Stars of Shaanxi Province (2021KJXX-48)the Shenzhen Science and Technology Program (KQTD20210811090115019)the Major Instrumentation Development Program of the Chinese Academy of Sciences(ZDKYYQ20220008)Shenzhen Basic Research (key project)(China)(JCYJ20210324120011030)the Scientific and Technological Innovation Team of Shaanxi Province (2022TD-36)the National Key R&D Programs(China)(2021YFA0910001)Shaanxi Fundamental Science Research Project for Chemistry&Biology (22JHQ078)the Scientific Research Program Funded by Shaanxi Provincial Education Department (22JK0247)。
文摘Despite the rapid development of probes for targeting single organelle, the construction of robust dual-organelle targeting probes with multicolor emission was rarely reported. Herein, two dual-emissive aggregation-induced emission luminogens(AIEgens)with donor-π-acceptor structures were designed and synthesized, namely QT-1 and QF-2. Both two AIEgens exhibited excitation wavelength-dependence defying the Kasha's rule, and could stain lipid droplets(LDs) and mitochondria in blue and red fluorescence, respectively. Moreover, thanks to the near-infrared emission and abundant reactive oxygen species(ROS) generation efficiency of QT-1, it was chosen as a photodynamic therapy agent to selectively kill cancer cells from normal cells. Upon light irradiation, an obvious decrease of mitochondrial membrane potential(MMP) and serious change of mitochondrial shape in cells were observed, which corresponded to the efficient inhibition of tumor growth in vivo. This work afforded a promising strategy for the construction of multicolor emission by tuning anti-Kasha behaviors and expanding their application in dualorganelle targeting-based phototheranostics.
基金National Natural Science Foundation of China,Grant/Award Numbers:21788102,52003228Science and Technology Plan of Shenzhen,Grant/Award Number:JCYJ20180306174910791+2 种基金Natural Science Foundation of Guangdong Province,Grant/Award Number:2019B121205002Research Grants Council of Hong Kong,Grant/Award Numbers:N_HKUT609/19,16305518,A-HKUST605/16,C6009-17GInnovation and Technology Commission,Grant/Award Numbers:ITC-CNERC14SC01,ITCPD/17-9。
文摘Organic and inorganic clusteroluminescence have attracted great attention while the underlying mechanisms is still not well understood.Here,we employed a series of ancient inorganic complexes platinocyanides with aggregation-induced emission property to elucidate the mechanism of clusteroluminescence including how does the chromophore form and how does the solid structures influence the luminescence behaviors.The results indicate that the isolated platinocyanide cannot work as a chromophore to emit visible light,while their clusterization at aggregate state can trigger the d-orbitals coupling of the platinum atoms to facilitate the electron exchange and delocalization to form a new chromophore to emit visible light.Furthermore,the counter ions and H2O ligands help to rigidify the three-dimensional network structure of the platinocyanides to suppress the excited state nonradiative decay,resulting in the high quantum yield of up to 96%.This work fundamentally helps understanding both the organic and inorganic clusteroluminescence phenomenon.