期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Quantum-enhanced optical precision measurement assisted by low-frequency squeezed vacuum states
1
作者 康国辉 冯晋霞 +2 位作者 程琳 李渊骥 张宽收 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期438-442,共5页
Stable low-frequency squeezed vacuum states at a wavelength of 1550 nm were generated.By controlling the squeezing angle of the squeezed vacuum states,two types of low-frequency quadrature-phase squeezed vacuum states... Stable low-frequency squeezed vacuum states at a wavelength of 1550 nm were generated.By controlling the squeezing angle of the squeezed vacuum states,two types of low-frequency quadrature-phase squeezed vacuum states and quadrature-amplitude squeezed vacuum states were obtained using one setup respectively.A quantum-enhanced fiber Mach–Zehnder interferometer(FMZI)was demonstrated for low-frequency phase measurement using the generated quadrature-phase squeezed vacuum states that were injected.When phase modulation was measured with the quantumenhanced FMZI,there were above 3 dB quantum improvements beyond the shot-noise limit(SNL)from 40 kHz to 200 kHz,and 2.3 dB quantum improvement beyond the SNL at 20 kHz was obtained.The generated quadrature-amplitude squeezed vacuum state was applied to perform low-frequency amplitude modulation measurement for sensitivity beyond the SNL based on optical fiber construction.There were about 2 dB quantum improvements beyond the SNL from 60 kHz to 200 kHz.The current scheme proves that quantum-enhanced fiber-based sensors are feasible and have potential applications in high-precision measurements based on fiber,particularly in the low-frequency range. 展开更多
关键词 squeezed vacuum states fiber Mach–Zehnder interferometer optical precision measurement
下载PDF
3D anchoring structured for LiFe_(0.5)Mn_(0.5)PO_(4)@cornstalk-C cathode materials
2
作者 Guangliang Zhang Riran Zang +13 位作者 Man Mo Zhijie Fang Yangxian Huang Kunsong Hu Jiali Huang Xinxiang Liu Lingyun Huang guohui kang Weijian Li Haiqing Zhan Xianquan Ming Guanhan Huang Guiliang Li Feng Zhan 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第8期302-305,共4页
The organic carbon source coating LiFe_(x)Mn_(1-x)PO_(4)suffers from the problem of non-uniform carbon cladding.Too thick carbon cladding layer instead hinders the de-embedding of lithium ions.In this paper,we choose ... The organic carbon source coating LiFe_(x)Mn_(1-x)PO_(4)suffers from the problem of non-uniform carbon cladding.Too thick carbon cladding layer instead hinders the de-embedding of lithium ions.In this paper,we choose cornstalk as the carbon source,then LiFe_(0.5)Mn_(0.5)PO_(4)@cornstalk-C(LFMP@C-C)with 3D anchoring structure is prepared by the solvothermal method.The results show that the LFMP with cornstalk as the carbon source has better performance compared to the sucrose-coated LFMP material(LFMP@C).The discharge capacity of LFMP@C-C is 116 mAh/g for the first cycle at 1 C and the capacity retention rate is 94.0%after 500 cycles,and the discharge capacity of LFMP@C-C is more than 17.17%higher than that of LFMP@C. 展开更多
关键词 LiFe_(0.5)Mn_(0.5)PO_(4) Cornstalk Solvothermal method 3D anchoring structure Cathode materials
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部