Centered or striped wick structures have been used to develop ultrathin heat pipes.Differing from traditional heat pipes,the centered or striped wick structures leave noncontact container surfaces with the wick struct...Centered or striped wick structures have been used to develop ultrathin heat pipes.Differing from traditional heat pipes,the centered or striped wick structures leave noncontact container surfaces with the wick structure.In this study,experiments andnumerical analyseswere conductedtoinvestigate the influenceof thesenoncontact surfaces.In the experiments,a strip-shaped wick structure was placed vertically,the top was sandwiched between wider rods and the bottom was immersed in a working fluid.The rod width was greater than the wick width;thus,noncontact surfaces were left between the rod and the wick structure.The heat was applied from the rod to the wick structure,and the evaporation heat transfer characteristics of the working fluid from the wick structure were evaluated.Water was used as the working fluid.The experiments were conducted by varying the rod and wick widths.The experimental results were obtained when the wick structures were placed separately.In the numerical analyses,the temperature and heat flux distributions in the rod were obtained.From the experimental and numerical results,it was confirmed that the noncontact surfaces caused the heat flux in the rod near both surfaces of the wick structure to concentrate,which increased the evaporation thermal resistance of the wick structure.A reduction in the noncontact surface area by increasing the wick width was found to be effective in decreasing the evaporation thermal resistance and increasing themaximumheat transfer rate of the wick structure.The separation of the wick structure increased the evaporation surface area.However,its effectiveness was limited when the heat transfer rate was small.展开更多
To enhance the liquor absorptivity of chitosan fibers (CS-Fs), N-succinyl surface-modified chitosan fibers (NSCS-Fs) were developed and evaluated for wound healing, The NSCS-Fs exhibited cracks on the surface and ...To enhance the liquor absorptivity of chitosan fibers (CS-Fs), N-succinyl surface-modified chitosan fibers (NSCS-Fs) were developed and evaluated for wound healing, The NSCS-Fs exhibited cracks on the surface and high liquor absorbing capacity with absorbing-dissolvable equilibrium state in phosphate buffer solution (PBS). The bacteriostasis ratios of NSCS-Fs against E. coli, S. aureus and C. albicans were higher than 80%. No cytotoxicity has been found for mouse embryo fibroblasts (MEFs) treated with NSCS-Fs leach liquor, Acute oral toxicity and skin irritation experiment were taken to evaluate the safety of NSCS-Fs in vitro. Muscle implant study showed that NSCS-Fs were biodegradable and non-toxic in vivo. These results suggested that the surface modified NSCS-Fs had favorable biological properties and improved liquor absorptivity, indicating that they could be used as promising dressing materials for wound care.展开更多
文摘Centered or striped wick structures have been used to develop ultrathin heat pipes.Differing from traditional heat pipes,the centered or striped wick structures leave noncontact container surfaces with the wick structure.In this study,experiments andnumerical analyseswere conductedtoinvestigate the influenceof thesenoncontact surfaces.In the experiments,a strip-shaped wick structure was placed vertically,the top was sandwiched between wider rods and the bottom was immersed in a working fluid.The rod width was greater than the wick width;thus,noncontact surfaces were left between the rod and the wick structure.The heat was applied from the rod to the wick structure,and the evaporation heat transfer characteristics of the working fluid from the wick structure were evaluated.Water was used as the working fluid.The experiments were conducted by varying the rod and wick widths.The experimental results were obtained when the wick structures were placed separately.In the numerical analyses,the temperature and heat flux distributions in the rod were obtained.From the experimental and numerical results,it was confirmed that the noncontact surfaces caused the heat flux in the rod near both surfaces of the wick structure to concentrate,which increased the evaporation thermal resistance of the wick structure.A reduction in the noncontact surface area by increasing the wick width was found to be effective in decreasing the evaporation thermal resistance and increasing themaximumheat transfer rate of the wick structure.The separation of the wick structure increased the evaporation surface area.However,its effectiveness was limited when the heat transfer rate was small.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 81271727 and 31300786), the International Science Technology Cooperation Program of China (Grant No. 2012DFB50140), Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20120132110012), the National Science Foundation for Post-doctor (Grant No. 2013 M541961 ), and Applied Basic Research Plan of Qingdao (Grant No. 14-2-4-98-jch).
文摘To enhance the liquor absorptivity of chitosan fibers (CS-Fs), N-succinyl surface-modified chitosan fibers (NSCS-Fs) were developed and evaluated for wound healing, The NSCS-Fs exhibited cracks on the surface and high liquor absorbing capacity with absorbing-dissolvable equilibrium state in phosphate buffer solution (PBS). The bacteriostasis ratios of NSCS-Fs against E. coli, S. aureus and C. albicans were higher than 80%. No cytotoxicity has been found for mouse embryo fibroblasts (MEFs) treated with NSCS-Fs leach liquor, Acute oral toxicity and skin irritation experiment were taken to evaluate the safety of NSCS-Fs in vitro. Muscle implant study showed that NSCS-Fs were biodegradable and non-toxic in vivo. These results suggested that the surface modified NSCS-Fs had favorable biological properties and improved liquor absorptivity, indicating that they could be used as promising dressing materials for wound care.