The increasing integration of wind power generation brings more uncertainty into the power system. Since the correlation may have a notable influence on the power system,the output powers of wind farms are generally c...The increasing integration of wind power generation brings more uncertainty into the power system. Since the correlation may have a notable influence on the power system,the output powers of wind farms are generally considered as correlated random variables in uncertainty analysis. In this paper, the C-vine pair copula theory is introduced to describe the complicated dependence of multidimensional wind power injection, and samples obeying this dependence structure are generated. Monte Carlo simulation is performed to analyze the small signal stability of a test system. The probabilistic stability under different correlation models and different operating conditions scenarios is investigated. The results indicate that the probabilistic small signal stability analysis adopting pair copula model is more accurate and stable than other dependence models under different conditions.展开更多
Lithium metal anode(LMA)is the ultimate"Holy Grail"electrode for next generation high-energy-density batteries.Nevertheless,its instinct high reactivity is a formidable challenge and has intensified side rea...Lithium metal anode(LMA)is the ultimate"Holy Grail"electrode for next generation high-energy-density batteries.Nevertheless,its instinct high reactivity is a formidable challenge and has intensified side reactions,destabilized the electrode/electrolyte interface and restricted the operating conditions strictly,thus hampering its practical application.Here,we"make up"the Li metal(M-Li)by constructing vaselinecoated layer by a simple dip-coating or casting method.With the chemically stable and hydrophobic vaseline protective layer,the stability of Li towards humid and corrosive atmosphere has been greatly improved.The M-Li guaranteed stable and prolonged cycling life after the anode suffering from corrosion in moist air(relative humidity-65%)or corrosive electrolyte(with 10,000 ppm H2O or S)both in symmetric cells and LiFePO4 full cells.This work illustrates a convenient,economic,and industrial applicable method for stable LMA.展开更多
Due to the increasing amount of photovoltaic (PV)-based power generation being connected to power systems, issues pertaining to the integration of the PV-based generators have attracted intense attention. In this conn...Due to the increasing amount of photovoltaic (PV)-based power generation being connected to power systems, issues pertaining to the integration of the PV-based generators have attracted intense attention. In this connection, the design of a PV-based stabilizer for enhancing power system dynamic stability is examined. The damping action is achieved through the independent control of real power flow from the stabilizer and voltage at the point of common coupling between the stabilizer and grid system. The stabilizer system is designed based on classical frequency response technique. Robustness of the proposed control strategy in enhancing network dynamic stability is demonstrated through computer simulation.展开更多
Zn metal anode suffers from dendrite issues and passive byproducts,which severely plagues the practical application of aqueous Zn metal batteries.Herein,a polyzwitterionic cross-linked double network hydrogel electrol...Zn metal anode suffers from dendrite issues and passive byproducts,which severely plagues the practical application of aqueous Zn metal batteries.Herein,a polyzwitterionic cross-linked double network hydrogel electrolyte composed of physical crosslinking(hyaluronic acid)and chemical crosslinking(synthetic zwitterionic monomer copolymerized with acrylamide)is introduced to overcome these obstacles.On the one hand,highly hydrophilic physical network provides an energy dissipation channel to buffer stress and builds a H_(2)O-poor interface to avoid side reactions.On the other hand,the charged groups(sulfonic and imidazolyl)in chemical crosslinking structure build anion/cation transport channels to boost ions’kinetics migration and regulate the typical solvent structure[Zn(H_(2)O)_(6)]^(2+)to R-SO_(3)^(−)[Zn(H_(2)O)_(4)]^(2+),with uniform electric field distribution and significant resistance to dendrites and parasitic reactions.Based on the above functions,the symmetric zinc cell exhibits superior cycle stability for more than 420 h at a high current density of 5 mA·cm^(−2),and Zn||MnO_(2)full cell has a reversible specific capacity of 150 mAh·g^(−1)after 1000 cycles at 2 C with this hydrogel electrolyte.Furthermore,the pouch cell delivers impressive flexibility and cyclability for energy-storage applications.展开更多
The future of high-energy density electrochemical energy storage systems relies on the advancement of rechargeable batteries that utilize reactive metals as anodes.In the alkaline metal,secondary battery systems becau...The future of high-energy density electrochemical energy storage systems relies on the advancement of rechargeable batteries that utilize reactive metals as anodes.In the alkaline metal,secondary battery systems because of abundant resource,high capacity and low redox potential,potassium(K)metal secondary battery(KMB)is expected to replace the existing lithiumion battery as a versatile platform for high-energy density,cost-effective energy storage devices.However,the difficulty in processing metal K results in nonstandard electrodes and hinders the development of KMBs.Furthermore,the mobility of the K metal anode due to its unique lowmelting point character at elevated temperatures in practical conditions leads to severe instability and risks in chemical/electrochemical processes.Herein,we fabricate a processable and moldable composite K metal anode by encapsulating K into reduced graphene oxide(rGO).The composite electrode can be engineered into various shapes discretionarily with precise sizes and stabilize the K metal anode at relatively high temperatures.Remarkably,the composite anode exhibits excellent cycling performance at high current density(8 mA cm^(-2)) with dendrite-free morphology.Paired with a Prussian blue cathode,the rGO-K composite anode shows much improved electrochemical performance and extended lifetime.展开更多
Transient angle stability of inverters equipped with the robust droop controller is investigated in this work.At first,the conditions on the control references to guarantee the existence of a feasible post-disturbance...Transient angle stability of inverters equipped with the robust droop controller is investigated in this work.At first,the conditions on the control references to guarantee the existence of a feasible post-disturbance operating point are derived.Then,the post-disturbance equilibrium points are found and their stability properties are characterized.Furthermore,the attraction regions of the stable equilibrium points are accurately depicted by calculating the stable and unstable manifolds of the surrounding unstable equilibrium points,which presents an explanation to system transient stability.Finally,the transient control considerations are provided to help the inverter ridethrough the disturbance and maintain its stability characteristics.It is shown that the transient angle stability is not a serious problem for droop controlled inverters with proper control settings.展开更多
The sports teaching and the movement training all is Our country University sports important constituent, between both in essentially already has one kind to promote and the development relations mutually, simultaneou...The sports teaching and the movement training all is Our country University sports important constituent, between both in essentially already has one kind to promote and the development relations mutually, simultaneously also is the sports academic circles always disputes the continuous topic. But speaking of some kind of degree, its both goal is and improves university student' s physical quality for the full scale development, enables the student to grasp the basic sports knowledge and the sports skill. Between the two only together to develop, in order to better promote the healthy development of college sports and therefore, this article on the physical education and sports training interactive development strategy in-depth discussion.展开更多
The mechanical behaviors of Zr43.5Cu43.5Ni4Al8Nb1,Zr55.4Cu31.6Ni4Al8Nb1,Ti32.8Zr30.2Ni5.3Cu9Be22.7(at.%)metallic glass at different strain rates were studied.For all the present alloys,the dispersion over 700 MPa was ...The mechanical behaviors of Zr43.5Cu43.5Ni4Al8Nb1,Zr55.4Cu31.6Ni4Al8Nb1,Ti32.8Zr30.2Ni5.3Cu9Be22.7(at.%)metallic glass at different strain rates were studied.For all the present alloys,the dispersion over 700 MPa was observed on the strength in the repeated dynamic compressions,which was much stronger than that of the quasi-static compressive strength.Such the dispersion of the dynamic compressive strength was well correlated with the corresponding fracture behaviors.The area of fracture surface was calculated and also showed a strong dispersion for all the fractured specimens tested at the strain rate of 500 s^-1 and 1000 s^-1.All the specimens showed a linear relationship between the square of dynamic compressive strength and the area of fracture surface in the dynamic compression tests.This phenomenon was mainly thought to be related to the difference of mean initial free volume concentration of different samples,stress concentration caused by the split Hopkinson pressure bar experimental setup and high sensitivity of defects under dynamic deformation.These findings were beneficial to deeply understand the effect of strain rate on the mechanical properties of the metallic glass.展开更多
A hybrid energy storage system(HESS)plays an important role in balancing the cost with the performance in terms of stabilizing the fluctuant power of wind farms and photovoltaic(PV)stations.To further bring down the c...A hybrid energy storage system(HESS)plays an important role in balancing the cost with the performance in terms of stabilizing the fluctuant power of wind farms and photovoltaic(PV)stations.To further bring down the cost and actually implement the dispatchability of wind/PV plants,there is a need to penetrate into the major factors that contribute to the cost of the any HESS.This paper first discusses hybrid energy storage systems,as well as chemical properties in different medium,deeming the ramp rate as one of the determinants that must be observed in the cost calculation.Then,a mathematical tool,Copula,is explained in details for the purpose of unscrambling the dependences between the power of wind and PV plants.To lower the cost,the basic rule for allocation of buffered power is also put forward,with the minimum energy capacities of the battery ESS(BESS)and the supercapacitor ESS(SC-ESS)simultaneously determined by integration.And the paper introduces the probability method to analyze how power and energy is compensated in certain confidence level.After that,two definitions of coefficients are set up,separately describing energy storage status and wind curtailment level.Finally,the paper gives a numerical example stemmed from real data acquired in wind farms and PV stations in Belgium.The conclusion presents that the cost of a hybrid energy storage system is greatly affected by ramp-rate and dependence between the power of wind farms and photovoltaic stations,in which dependence can easily be determined by Copulas.展开更多
Parallel operation of inverter modules is the solution to increase the reliability,efficiency,and redundancy of inverters in microgrids.Load sharing among inverters in distributed generators(DGs)is a key issue.This st...Parallel operation of inverter modules is the solution to increase the reliability,efficiency,and redundancy of inverters in microgrids.Load sharing among inverters in distributed generators(DGs)is a key issue.This study investigates the feasibility of power-sharing among parallel DGs using a dual control strategy in islanded mode of a microgrid.PQ control and droop control techniques are established to control the microgrid operation.P-f and Q-E droop control is used to attain real and reactive power sharing.The frequency variation caused by load change is an issue in droop control strategy whereas the tracking error of inverter power in PQ control is also a challenge.To address these issues,two DGs are interfaced with two parallel inverters in an islanded AC microgrid.PQ control is investigated for controlling the output real and reactive power of the DGs by assigning their references.The inverter under enhanced droop control implements power reallocation to restore the frequency among the distributed generators with predefined droop characteristics.A dual control strategy is proposed for the AC microgrid under islanded operation without communication link.Simulation studies are carried out using MATLAB/SIMULINK and the results show the validity and effective power-sharing performance of the system while maintaining a stable operation when the microgrid is in islanding mode.展开更多
The electric vehicle(EV)charging station is a critical part of the infrastructure for the wide adoption of EVs.Realtime simulation of an EV station plays an essential role in testing its operation under different oper...The electric vehicle(EV)charging station is a critical part of the infrastructure for the wide adoption of EVs.Realtime simulation of an EV station plays an essential role in testing its operation under different operating modes.However,the large numbers of high-frequency power electronic switches contained in EV chargers pose great challenges for real-time simulation.This paper proposes a compact electromagnetic transient program(C-EMTP)algorithm for FPGA-based real-time simulation of an EV station with multiple high-frequency chargers.The C-EMTP algorithm transforms the traditional EMTP algorithm into two parallel sub-tasks only consisting of simple matrix operations,to fully utilize the high parallelism of FPGA.The simulation time step can be greatly reduced compared with that of the traditional EMTP algorithm,and so the simulation accuracy for high-frequency power electronics is improved.The EV chargers can be decoupled with each other and simulated in parallel.A CPU-FPGA-based realtime simulation platform is developed and the proposed simulation of the EV station is implemented.The control strategy is simulated in a CPU with 100μs time-step,while the EV station circuit topology is simulated in a single FPGA with a 250 ns time-step.In the case studies,the EV station consists of a two-level rectifier and five dual-active bridge(DAB)EV chargers.It is tested under different scenarios,and the real-time simulation results are validated using PSCAD/EMTDC.展开更多
Globally abundant wave energy for power generation attracts ever increasing attention. Because of non-linear dynamics and potential uncertainties in ocean energy conversion systems, generation productivity needs to be...Globally abundant wave energy for power generation attracts ever increasing attention. Because of non-linear dynamics and potential uncertainties in ocean energy conversion systems, generation productivity needs to be increased by applying robust control algorithms. This paper focuses on control strategies for a small ocean energy conversion system based on a direct driven permanent magnet synchronous generator (PMSG). It evaluates the performance of two kinds of control strategies, i.e., traditional field-oriented control (FOC) and robust adaptive control. The proposed adaptive control successfully achieves maximum velocity and stable power production, with reduced speed tracking error and system response time. The adaptive control also guarantees global system stability and its superiority over FOC by using a non-linear back-stepping control technique offering a better optimization solution. The robustness of the ocean energy conversion system is further enhanced by investigating the Lyapunov method and the use of a DC-DC boost converter. To overcome system complexity, turbine-generator based power take-off (PTO) is considered. A Matlab/Simulink study verifies the advantages of a non-linear control strategy for an Oscillating Water Column (OWC) based power generation system.展开更多
基金supported by the National Natural Science Foundation of China(51307107,51477098,51877133)SRFDP(20130073120034)State Grid Corporation of China Science and Technology Project(Hybrid AC/DC Power Grid Planning and Optimization Study Under the Framework of GEI)。
文摘The increasing integration of wind power generation brings more uncertainty into the power system. Since the correlation may have a notable influence on the power system,the output powers of wind farms are generally considered as correlated random variables in uncertainty analysis. In this paper, the C-vine pair copula theory is introduced to describe the complicated dependence of multidimensional wind power injection, and samples obeying this dependence structure are generated. Monte Carlo simulation is performed to analyze the small signal stability of a test system. The probabilistic stability under different correlation models and different operating conditions scenarios is investigated. The results indicate that the probabilistic small signal stability analysis adopting pair copula model is more accurate and stable than other dependence models under different conditions.
基金support from the National Natural Science Foundation of China(Grant nos.51872196)Natural Science Foundation of Tianjin,China(Grant no.17JCJQJC44100)+1 种基金Metal Fuel Cell Key Laboratory of Sichuan Province,National Postdoctoral Program for Innovative Talent(NO.BX20190232)China Postdoctoral Science Foundation(NO.2019M660059)。
文摘Lithium metal anode(LMA)is the ultimate"Holy Grail"electrode for next generation high-energy-density batteries.Nevertheless,its instinct high reactivity is a formidable challenge and has intensified side reactions,destabilized the electrode/electrolyte interface and restricted the operating conditions strictly,thus hampering its practical application.Here,we"make up"the Li metal(M-Li)by constructing vaselinecoated layer by a simple dip-coating or casting method.With the chemically stable and hydrophobic vaseline protective layer,the stability of Li towards humid and corrosive atmosphere has been greatly improved.The M-Li guaranteed stable and prolonged cycling life after the anode suffering from corrosion in moist air(relative humidity-65%)or corrosive electrolyte(with 10,000 ppm H2O or S)both in symmetric cells and LiFePO4 full cells.This work illustrates a convenient,economic,and industrial applicable method for stable LMA.
文摘Due to the increasing amount of photovoltaic (PV)-based power generation being connected to power systems, issues pertaining to the integration of the PV-based generators have attracted intense attention. In this connection, the design of a PV-based stabilizer for enhancing power system dynamic stability is examined. The damping action is achieved through the independent control of real power flow from the stabilizer and voltage at the point of common coupling between the stabilizer and grid system. The stabilizer system is designed based on classical frequency response technique. Robustness of the proposed control strategy in enhancing network dynamic stability is demonstrated through computer simulation.
基金the Science Technology and Innovation Team in University of Henan Province(No.24IRTSTHN002)the National Natural Science Foundation of China(No.22279121)China Postdoctoral Science Foundation(No.2022M712863),and DFT calculations were supported by the National Supercomputing Centre in Zhengzhou and the funding of Zhengzhou University.
文摘Zn metal anode suffers from dendrite issues and passive byproducts,which severely plagues the practical application of aqueous Zn metal batteries.Herein,a polyzwitterionic cross-linked double network hydrogel electrolyte composed of physical crosslinking(hyaluronic acid)and chemical crosslinking(synthetic zwitterionic monomer copolymerized with acrylamide)is introduced to overcome these obstacles.On the one hand,highly hydrophilic physical network provides an energy dissipation channel to buffer stress and builds a H_(2)O-poor interface to avoid side reactions.On the other hand,the charged groups(sulfonic and imidazolyl)in chemical crosslinking structure build anion/cation transport channels to boost ions’kinetics migration and regulate the typical solvent structure[Zn(H_(2)O)_(6)]^(2+)to R-SO_(3)^(−)[Zn(H_(2)O)_(4)]^(2+),with uniform electric field distribution and significant resistance to dendrites and parasitic reactions.Based on the above functions,the symmetric zinc cell exhibits superior cycle stability for more than 420 h at a high current density of 5 mA·cm^(−2),and Zn||MnO_(2)full cell has a reversible specific capacity of 150 mAh·g^(−1)after 1000 cycles at 2 C with this hydrogel electrolyte.Furthermore,the pouch cell delivers impressive flexibility and cyclability for energy-storage applications.
基金support from National Natural Science Foundation of China(Grant Nos.51872196)Natural Science Foundation of Tianjin,China(Grant No.17JCJQJC44100)+3 种基金National Postdoctoral Program for Innovative Talent(No.BX20190232)China Postdoctoral Science Foundation(No.2019M660059)Jiangxi Provincial Natural Science Foundation(Grant no.20202ACBL214007)Opening Project of Key Laboratory of Materials Processing and Mold.
文摘The future of high-energy density electrochemical energy storage systems relies on the advancement of rechargeable batteries that utilize reactive metals as anodes.In the alkaline metal,secondary battery systems because of abundant resource,high capacity and low redox potential,potassium(K)metal secondary battery(KMB)is expected to replace the existing lithiumion battery as a versatile platform for high-energy density,cost-effective energy storage devices.However,the difficulty in processing metal K results in nonstandard electrodes and hinders the development of KMBs.Furthermore,the mobility of the K metal anode due to its unique lowmelting point character at elevated temperatures in practical conditions leads to severe instability and risks in chemical/electrochemical processes.Herein,we fabricate a processable and moldable composite K metal anode by encapsulating K into reduced graphene oxide(rGO).The composite electrode can be engineered into various shapes discretionarily with precise sizes and stabilize the K metal anode at relatively high temperatures.Remarkably,the composite anode exhibits excellent cycling performance at high current density(8 mA cm^(-2)) with dendrite-free morphology.Paired with a Prussian blue cathode,the rGO-K composite anode shows much improved electrochemical performance and extended lifetime.
基金supported in part by National Natural Science Foundation of China (No.51877133)China Scholarship Council,and National Science Foundation (Award No.1810105)。
文摘Transient angle stability of inverters equipped with the robust droop controller is investigated in this work.At first,the conditions on the control references to guarantee the existence of a feasible post-disturbance operating point are derived.Then,the post-disturbance equilibrium points are found and their stability properties are characterized.Furthermore,the attraction regions of the stable equilibrium points are accurately depicted by calculating the stable and unstable manifolds of the surrounding unstable equilibrium points,which presents an explanation to system transient stability.Finally,the transient control considerations are provided to help the inverter ridethrough the disturbance and maintain its stability characteristics.It is shown that the transient angle stability is not a serious problem for droop controlled inverters with proper control settings.
文摘The sports teaching and the movement training all is Our country University sports important constituent, between both in essentially already has one kind to promote and the development relations mutually, simultaneously also is the sports academic circles always disputes the continuous topic. But speaking of some kind of degree, its both goal is and improves university student' s physical quality for the full scale development, enables the student to grasp the basic sports knowledge and the sports skill. Between the two only together to develop, in order to better promote the healthy development of college sports and therefore, this article on the physical education and sports training interactive development strategy in-depth discussion.
基金financially supported by the National Natural Science Foundation of China(Nos.51790484,U1738101)the National Key Research and Development Program(No.2018YFB0703402)+1 种基金the Liaoning Revitalization Talents Program(Nos.XLYC1802078 and XLYC1807062)the Shenyang Amorphous Metal Manufacturing Co.,Ltd。
文摘The mechanical behaviors of Zr43.5Cu43.5Ni4Al8Nb1,Zr55.4Cu31.6Ni4Al8Nb1,Ti32.8Zr30.2Ni5.3Cu9Be22.7(at.%)metallic glass at different strain rates were studied.For all the present alloys,the dispersion over 700 MPa was observed on the strength in the repeated dynamic compressions,which was much stronger than that of the quasi-static compressive strength.Such the dispersion of the dynamic compressive strength was well correlated with the corresponding fracture behaviors.The area of fracture surface was calculated and also showed a strong dispersion for all the fractured specimens tested at the strain rate of 500 s^-1 and 1000 s^-1.All the specimens showed a linear relationship between the square of dynamic compressive strength and the area of fracture surface in the dynamic compression tests.This phenomenon was mainly thought to be related to the difference of mean initial free volume concentration of different samples,stress concentration caused by the split Hopkinson pressure bar experimental setup and high sensitivity of defects under dynamic deformation.These findings were beneficial to deeply understand the effect of strain rate on the mechanical properties of the metallic glass.
基金supported by Shanghai Science and Technology Committee(13231204002)National Key Technology R&D Program of China(2015BAA01B02).
文摘A hybrid energy storage system(HESS)plays an important role in balancing the cost with the performance in terms of stabilizing the fluctuant power of wind farms and photovoltaic(PV)stations.To further bring down the cost and actually implement the dispatchability of wind/PV plants,there is a need to penetrate into the major factors that contribute to the cost of the any HESS.This paper first discusses hybrid energy storage systems,as well as chemical properties in different medium,deeming the ramp rate as one of the determinants that must be observed in the cost calculation.Then,a mathematical tool,Copula,is explained in details for the purpose of unscrambling the dependences between the power of wind and PV plants.To lower the cost,the basic rule for allocation of buffered power is also put forward,with the minimum energy capacities of the battery ESS(BESS)and the supercapacitor ESS(SC-ESS)simultaneously determined by integration.And the paper introduces the probability method to analyze how power and energy is compensated in certain confidence level.After that,two definitions of coefficients are set up,separately describing energy storage status and wind curtailment level.Finally,the paper gives a numerical example stemmed from real data acquired in wind farms and PV stations in Belgium.The conclusion presents that the cost of a hybrid energy storage system is greatly affected by ramp-rate and dependence between the power of wind farms and photovoltaic stations,in which dependence can easily be determined by Copulas.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 51477098National Key R&D Program of China(2016YFB0900504).
文摘Parallel operation of inverter modules is the solution to increase the reliability,efficiency,and redundancy of inverters in microgrids.Load sharing among inverters in distributed generators(DGs)is a key issue.This study investigates the feasibility of power-sharing among parallel DGs using a dual control strategy in islanded mode of a microgrid.PQ control and droop control techniques are established to control the microgrid operation.P-f and Q-E droop control is used to attain real and reactive power sharing.The frequency variation caused by load change is an issue in droop control strategy whereas the tracking error of inverter power in PQ control is also a challenge.To address these issues,two DGs are interfaced with two parallel inverters in an islanded AC microgrid.PQ control is investigated for controlling the output real and reactive power of the DGs by assigning their references.The inverter under enhanced droop control implements power reallocation to restore the frequency among the distributed generators with predefined droop characteristics.A dual control strategy is proposed for the AC microgrid under islanded operation without communication link.Simulation studies are carried out using MATLAB/SIMULINK and the results show the validity and effective power-sharing performance of the system while maintaining a stable operation when the microgrid is in islanding mode.
基金supported by China Postdoctoral Science Foundation(BX20200221,2020 M671122)National Key Research and Development Program of China(2019YFE012784)National Natural Science Foundation of China(51877133).
文摘The electric vehicle(EV)charging station is a critical part of the infrastructure for the wide adoption of EVs.Realtime simulation of an EV station plays an essential role in testing its operation under different operating modes.However,the large numbers of high-frequency power electronic switches contained in EV chargers pose great challenges for real-time simulation.This paper proposes a compact electromagnetic transient program(C-EMTP)algorithm for FPGA-based real-time simulation of an EV station with multiple high-frequency chargers.The C-EMTP algorithm transforms the traditional EMTP algorithm into two parallel sub-tasks only consisting of simple matrix operations,to fully utilize the high parallelism of FPGA.The simulation time step can be greatly reduced compared with that of the traditional EMTP algorithm,and so the simulation accuracy for high-frequency power electronics is improved.The EV chargers can be decoupled with each other and simulated in parallel.A CPU-FPGA-based realtime simulation platform is developed and the proposed simulation of the EV station is implemented.The control strategy is simulated in a CPU with 100μs time-step,while the EV station circuit topology is simulated in a single FPGA with a 250 ns time-step.In the case studies,the EV station consists of a two-level rectifier and five dual-active bridge(DAB)EV chargers.It is tested under different scenarios,and the real-time simulation results are validated using PSCAD/EMTDC.
基金supported by National Natural Science Foundation of China(51477098).
文摘Globally abundant wave energy for power generation attracts ever increasing attention. Because of non-linear dynamics and potential uncertainties in ocean energy conversion systems, generation productivity needs to be increased by applying robust control algorithms. This paper focuses on control strategies for a small ocean energy conversion system based on a direct driven permanent magnet synchronous generator (PMSG). It evaluates the performance of two kinds of control strategies, i.e., traditional field-oriented control (FOC) and robust adaptive control. The proposed adaptive control successfully achieves maximum velocity and stable power production, with reduced speed tracking error and system response time. The adaptive control also guarantees global system stability and its superiority over FOC by using a non-linear back-stepping control technique offering a better optimization solution. The robustness of the ocean energy conversion system is further enhanced by investigating the Lyapunov method and the use of a DC-DC boost converter. To overcome system complexity, turbine-generator based power take-off (PTO) is considered. A Matlab/Simulink study verifies the advantages of a non-linear control strategy for an Oscillating Water Column (OWC) based power generation system.