期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
高等学校实验技术队伍职业化路径研究 被引量:2
1
作者 王志武 马国杰 +1 位作者 侯建华 刘学军 《大学化学》 CAS 2022年第2期103-106,共4页
高校实验室是“立德树人”的重要阵地,实验技术队伍是实现“三全育人”的重要保障。高校快速发展过程中,对实验技术队伍赋予了建设和管理的多重任务,而自身缺乏明确的发展方向和目标,实验技术队伍职业化研究成为高校发展的现实需求。构... 高校实验室是“立德树人”的重要阵地,实验技术队伍是实现“三全育人”的重要保障。高校快速发展过程中,对实验技术队伍赋予了建设和管理的多重任务,而自身缺乏明确的发展方向和目标,实验技术队伍职业化研究成为高校发展的现实需求。构建适应高等学校发展的实验技术队伍专业化管理体系,明确实验队伍职业化发展路径选择的具体措施,促进实验技术队伍稳定性,强化实验技术队伍在高等学校治理结构和提升内涵建设的有效作用,为提升高校实验室育人功能奠定基础,为高等学校快速发展提供有力支撑。 展开更多
关键词 高等学校 实验技术队伍 专业化 职业化 路径
下载PDF
高校实验室危险化学品采购管理体系的建设与实践 被引量:12
2
作者 马国杰 郭依舒 +2 位作者 李仕玉 乔德旗 王志武 《大学化学》 CAS 2022年第2期118-122,共5页
由于高校实验室危险化学品重大事故时有发生,对危险化学品的管理已成为高校实验室安全管理的重要问题。本文以郑州大学为例,从危险化学品的采购、存储、配送、使用、危废收集全过程,梳理和分析实验室危险化学品管理存在的问题,针对危险... 由于高校实验室危险化学品重大事故时有发生,对危险化学品的管理已成为高校实验室安全管理的重要问题。本文以郑州大学为例,从危险化学品的采购、存储、配送、使用、危废收集全过程,梳理和分析实验室危险化学品管理存在的问题,针对危险化学品的安全管理体系建设进行了探索,介绍了危险化学品采购管理一体化平台的建设思路和具体措施,有效实现了危险化学品全生命周期管理,保障学校教学科研安全运行。 展开更多
关键词 实验室安全 危险化学品管理 体系建设
下载PDF
The chromatin remodeler BRAHMA recruits HISTONE DEACETYLASE6 to regulate root growth inhibition in response to phosphate starvation in Arabidopsis 被引量:1
3
作者 Tao Li Ruyue Zhang +5 位作者 Viswanathan Satheesh Peng Wang guojie ma Jianfei Guo Guo-Yong An Mingguang Lei 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2022年第12期2314-2326,共13页
Plasticity in root system architecture(RSA)allows plants to adapt to changing nutritional status in the soil.Phosphorus availability is a major determinant of crop yield,and RSA remodeling is critical to increasing th... Plasticity in root system architecture(RSA)allows plants to adapt to changing nutritional status in the soil.Phosphorus availability is a major determinant of crop yield,and RSA remodeling is critical to increasing the efficiency of phosphorus acquisition.Although substantial progress has been made in understanding the signaling mechanism driving phosphate starvation responses in plants,whether and how epigenetic regulatory mechanisms contribute is poorly understood.Here,we report that the Switch defective/sucrose non-fermentable(SWI/SNF)ATPase BRAHMA(BRM)is involved in the local response to phosphate(Pi)starvation.The loss of BRM function induces iron(Fe)accumulation through increased LOW PHOSPHATE ROOT1(LPR1)and LPR2 expression,reducing primary root length under Pi deficiency.We also demonstrate that BRM recruits the histone deacetylase(HDA)complex HDA6-HDC1 to facilitate histone H3 deacetylation at LPR loci,thereby negatively regulating local Pi deficiency responses.BRM is degraded under Pi deficiency conditions through the 26 S proteasome pathway,leading to increased histone H3 acetylation at the LPR loci.Collectively,our data suggest that the chromatin remodeler BRM,in concert with HDA6,negatively regulates Fe-dependent local Pi starvation responses by transcriptionally repressing the RSA-related genes LPR1 and LPR2 in Arabidopsis thaliana. 展开更多
关键词 BRM histone deacetylation phosphate starvation root development
原文传递
Inositol Pyrophosphate lnsP8 Acts as an Intracellular Phosphate Signal in Arabidopsis 被引量:13
4
作者 Jinsong Dong guojie ma +13 位作者 Liqian Sui Mengwei Wei Viswanathan Satheesh Ruyue Zhang Shenghong Ge Jinkai Li Tong-En Zhang Christopher Wittwer Henning JJessen Huiming Zhang Guo-Yong An Dai-Yin Chao Dong Liu Mingguang Lei 《Molecular Plant》 SCIE CAS CSCD 2019年第11期1463-1473,共11页
The maintenance of cellular phosphate(Pi)homeostasis is of great importance in living organisms.The SPX domain-containing protein 1(SPX1)proteins from both Arabidopsis and rice have been proposed to act as sensors of ... The maintenance of cellular phosphate(Pi)homeostasis is of great importance in living organisms.The SPX domain-containing protein 1(SPX1)proteins from both Arabidopsis and rice have been proposed to act as sensors of Pi status.The molecular signal indicating the cellular Pi status and regulating Pi homeostasis in plants,however,remains to be identified,as Pi itself does not bind to the SPX domain.Here,we report the identification of the inositol pyrophosphate lnsP8 as a signaling molecule that regulates Pi homeostasis in Arabidopsis.Polyacrylamide gel electrophoresis profiling of InsPs revealed that lnsP8 level positively cor­relates with cellular Pi concentration.We demonstrated that the homologs of diphosphoinositol pentaki-sphosphate kinase(PPIP5K),VIH1 and VIH2,function redundantly to synthesize lnsP8,and that the vih1 vih2 double mutant overaccumulates Pi.SPX1 directly interacts with PHR1,the central regulator of Pi star­vation responses,to inhibit its function under Pi-replete conditions.However,this interaction is compro­mised in the vih1 vih2 double mutant,resulting in the constitutive induction of Pi starvation-induced genes,indicating that plant cells cannot sense cellular Pi status without lnsP8.Furthermore,we showed that lnsP8 could directly bind to the SPX domain of SPX1 and is essential for the interaction between SPX1 and PHR1.Collectively,our study suggests that lnsP8 is the intracellular Pi signaling molecule serving as the ligand of SPX1 for controlling Pi homeostasis in plants. 展开更多
关键词 nositol pyrophosphates lnsP8 phosphate signal SPX domain Pi homeostasis
原文传递
Intracellular phosphate sensing in plants
5
作者 guojie ma Viswanathan Satheesh Mingguang Lei 《Molecular Plant》 SCIE CAS CSCD 2022年第12期1831-1833,共3页
Phosphorus is a building block in various biomolecules such as nucleic acids,proteins,and phospholipids.It also plays pivotal roles in many metabolic pathways,including photosynthesis and respiration(Bowler et al.,201... Phosphorus is a building block in various biomolecules such as nucleic acids,proteins,and phospholipids.It also plays pivotal roles in many metabolic pathways,including photosynthesis and respiration(Bowler et al.,2010).Plants take up phosphorus as inorganic phosphate(Pi),which is limited in most soils,and Pi constraints affect plant growth and development and hence agricultural productivity.To cope with low Pi availability in soil,plants have evolved complex mechanisms to maintain Pi homeostasis at the whole-plant and cellular level,which includes Pi uptake,storage,and redistribution. 展开更多
关键词 SOIL MAINTAIN hence
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部