Radio waves are highly attenuated and distorted by turbulent plasma sheath around hypersonic vehicles in near space, leading to communication blackout. The purpose of the paper is to investigate the plasma channel cha...Radio waves are highly attenuated and distorted by turbulent plasma sheath around hypersonic vehicles in near space, leading to communication blackout. The purpose of the paper is to investigate the plasma channel characteristics and the communication performances over the channel. We treat the turbulent plasma medium as a fast fading wireless channel. The coherence time and the spectrum spread of the plasma sheath channel are obtained in terms of root-meansquare(RMS). Baseband simulation scheme is proposed based on a stratified model of the plasma flow field. Results indicate that the coherence time is on the order of milliseconds and decreases rapidly with the increasing electron density turbulence. The spectrum spread due to plasma turbulence is also significant. Extensive simulations have been carried out to make communication performance evaluations. Quantitative results show that error floor takes place for PSK and QAM, while FSK with noncoherent detection is a promising method to mitigate the blackout problem.展开更多
基金supported by the National Key Basic Research Program of China(2014CB340206)partly supported by National Natural Science Foundation of China(No.61132002,No.61321061)
文摘Radio waves are highly attenuated and distorted by turbulent plasma sheath around hypersonic vehicles in near space, leading to communication blackout. The purpose of the paper is to investigate the plasma channel characteristics and the communication performances over the channel. We treat the turbulent plasma medium as a fast fading wireless channel. The coherence time and the spectrum spread of the plasma sheath channel are obtained in terms of root-meansquare(RMS). Baseband simulation scheme is proposed based on a stratified model of the plasma flow field. Results indicate that the coherence time is on the order of milliseconds and decreases rapidly with the increasing electron density turbulence. The spectrum spread due to plasma turbulence is also significant. Extensive simulations have been carried out to make communication performance evaluations. Quantitative results show that error floor takes place for PSK and QAM, while FSK with noncoherent detection is a promising method to mitigate the blackout problem.