Recently,local differential privacy(LDP)has been used as the de facto standard for data sharing and analyzing with high-level privacy guarantees.Existing LDP-based mechanisms mainly focus on learning statistical infor...Recently,local differential privacy(LDP)has been used as the de facto standard for data sharing and analyzing with high-level privacy guarantees.Existing LDP-based mechanisms mainly focus on learning statistical information about the entire population from sensitive data.For the first time in the literature,we use LDP for distance estimation between distributed data to support more complicated data analysis.Specifically,we propose PrivBV—a locally differentially private bit vector mechanism with a distance-aware property in the anonymized space.We also present an optimization strategy for reducing privacy leakage in the high-dimensional space.The distance-aware property of PrivBV brings new insights into complicated data analysis in distributed environments.As study cases,we show the feasibility of applying PrivBV to privacy-preserving record linkage and non-interactive clustering.Theoretical analysis and experimental results demonstrate the effectiveness of the proposed scheme.展开更多
基金supported by National Key Research and Development Program of China(Nos.2019QY1402 and 2016YFB0800901)。
文摘Recently,local differential privacy(LDP)has been used as the de facto standard for data sharing and analyzing with high-level privacy guarantees.Existing LDP-based mechanisms mainly focus on learning statistical information about the entire population from sensitive data.For the first time in the literature,we use LDP for distance estimation between distributed data to support more complicated data analysis.Specifically,we propose PrivBV—a locally differentially private bit vector mechanism with a distance-aware property in the anonymized space.We also present an optimization strategy for reducing privacy leakage in the high-dimensional space.The distance-aware property of PrivBV brings new insights into complicated data analysis in distributed environments.As study cases,we show the feasibility of applying PrivBV to privacy-preserving record linkage and non-interactive clustering.Theoretical analysis and experimental results demonstrate the effectiveness of the proposed scheme.