Recent research on photothermal therapy(PTT) has sparked significant interest in the development of new organic photothermal agents(PTAs),ranging from single-molecule to aggregated levels.However,controlling aggregati...Recent research on photothermal therapy(PTT) has sparked significant interest in the development of new organic photothermal agents(PTAs),ranging from single-molecule to aggregated levels.However,controlling aggregation pathways for PTAs with ultrahigh photothermal conversion efficiency(PCE) remains a major challenge.Herein,a two-pronged approach utilizing “Haggregation” and “intramolecular motion” was employed to enhance the PCE of an acceptor-substituted squaraine dye(NSQs).The C2vmolecular symmetry of the NSQs,which possess a ground state dipole moment(μg),promotes H-dimeric aggregates through dipole-dipole counteraction.Peripheral triphenylethylene or diphenylamine groups were added to this H-dimeric nanoplatform.This was done to enhance intramolecular motions for heat generation and also to extend conjugation,which redshifted the optical absorption and balanced the blue-shift induced by H-aggregation.With this technique,an organic PTA with NIR-II absorption was developed,and its nanoparticle achieved a remarkable PCE of 86.3% under 1,064 nm laser excitation.Femtosecond transient absorption spectroscopy and quantum mechanical calculations demonstrated the accelerated internal conversion process in NIR-II PTAs for rapid heat generation.The NSQs nanoparticles exhibit superior photothermal therapeutic properties for in vivo photoacoustic imaging-guided PTT,demonstrating the potential of bottom-up design to enable synergistic engineering strategies towards efficient phototheranostic agents.展开更多
基金supported by the National Natural Science Foundation of China (22063005)the Natural Science Foundation of Jiangxi Province (20212ACBA203012,20224BAB214003,20232BAB-203031)the Interdisciplinary Innovation Fund of Natural Science,Nanchang University (9167-27060003-ZD2101,9167-28220007-YB2113)。
文摘Recent research on photothermal therapy(PTT) has sparked significant interest in the development of new organic photothermal agents(PTAs),ranging from single-molecule to aggregated levels.However,controlling aggregation pathways for PTAs with ultrahigh photothermal conversion efficiency(PCE) remains a major challenge.Herein,a two-pronged approach utilizing “Haggregation” and “intramolecular motion” was employed to enhance the PCE of an acceptor-substituted squaraine dye(NSQs).The C2vmolecular symmetry of the NSQs,which possess a ground state dipole moment(μg),promotes H-dimeric aggregates through dipole-dipole counteraction.Peripheral triphenylethylene or diphenylamine groups were added to this H-dimeric nanoplatform.This was done to enhance intramolecular motions for heat generation and also to extend conjugation,which redshifted the optical absorption and balanced the blue-shift induced by H-aggregation.With this technique,an organic PTA with NIR-II absorption was developed,and its nanoparticle achieved a remarkable PCE of 86.3% under 1,064 nm laser excitation.Femtosecond transient absorption spectroscopy and quantum mechanical calculations demonstrated the accelerated internal conversion process in NIR-II PTAs for rapid heat generation.The NSQs nanoparticles exhibit superior photothermal therapeutic properties for in vivo photoacoustic imaging-guided PTT,demonstrating the potential of bottom-up design to enable synergistic engineering strategies towards efficient phototheranostic agents.