期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Cryptomining Malware Detection Based on Edge Computing-Oriented Multi-Modal Features Deep Learning 被引量:2
1
作者 Wenjuan Lian guoqing nie +2 位作者 Yanyan Kang Bin Jia Yang Zhang 《China Communications》 SCIE CSCD 2022年第2期174-185,共12页
In recent years,with the increase in the price of cryptocurrencies,the number of malicious cryptomining software has increased significantly.With their powerful spreading ability,cryptomining malware can unknowingly o... In recent years,with the increase in the price of cryptocurrencies,the number of malicious cryptomining software has increased significantly.With their powerful spreading ability,cryptomining malware can unknowingly occupy our resources,harm our interests,and damage more legitimate assets.However,although current traditional rule-based malware detection methods have a low false alarm rate,they have a relatively low detection rate when faced with a large volume of emerging malware.Even though common machine learning-based or deep learning-based methods have certain ability to learn and detect unknown malware,the characteristics they learn are single and independent,and cannot be learned adaptively.Aiming at the above problems,we propose a deep learning model with multi-input of multi-modal features,which can simultaneously accept digital features and image features on different dimensions.The model in turn includes parallel learning of three sub-models and ensemble learning of another specific sub-model.The four sub-models can be processed in parallel on different devices and can be further applied to edge computing environments.The model can adaptively learn multi-modal features and output prediction results.The detection rate of our model is as high as 97.01%and the false alarm rate is only 0.63%.The experimental results prove the advantage and effectiveness of the proposed method. 展开更多
关键词 cryptomining malware MULTI-MODAL ensemble learning deep learning edge computing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部