氨(NH_(3))作为重要的化学品和能源储存介质,需求量与日俱增.本文旨在通过电化学硝酸根还原反应(NO_(3)^(−)RR),将NO_(3)^(−)转化为NH3,不仅解决了NO_(3)^(−)引起的环境污染问题,又可以满足对NH_(3)的迫切需求.然而,NO_(3)^(−)RR涉及多...氨(NH_(3))作为重要的化学品和能源储存介质,需求量与日俱增.本文旨在通过电化学硝酸根还原反应(NO_(3)^(−)RR),将NO_(3)^(−)转化为NH3,不仅解决了NO_(3)^(−)引起的环境污染问题,又可以满足对NH_(3)的迫切需求.然而,NO_(3)^(−)RR涉及多个电子和质子转移过程,其中,NO_(2)^(−)是NO_(3)^(−)活化转化和深度还原合成NH_(3)的重要中间体.酞菁铜(CuPc)能够高效地活化转化NO_(3)^(−)为NO_(2)^(−),但在低过电位时无法有效地将NO2−还原为NH3,难以获得较高的氨法拉第效率(FENH3)和分电流密度.而氮配位的铁单原子催化剂(FeNC)则有较好的NO_(2)^(−)吸附活化特性.因此,利用双组分催化剂之间的协同作用以实现高效NO_(3)^(−)RR的活性和选择性是本文的主要研究思路.本文设计了CuPc/FeNC串联催化剂,利用CuPc和FeNC对NO_(3)^(−)和NO_(2)^(−)的吸附活化能力的差异,实现了高效的协同催化转化.X射线衍射、高角环形暗场扫描透射电镜、X射线光电子能谱及X射线吸收谱结果表明,FeNC催化剂中Fe原子均匀分布于ZIF-8热解后的基底.通过将FeNC和CuPc负载于气体扩散电极,在流动电解池中完成NO_(3)^(−)RR.CuPc/FeNC催化剂在较低电势区间中能够实现接近100%的NH3法拉第效率,同时在−0.57 V vs.RHE时达到273 mA cm–2的NH3分电流密度,并且在整个电势范围内有效地抑制了NO_(2)^(–)聚集.与单组分催化剂CuPc和FeNC对比结果表明,在−0.53 V vs.RHE时,CuPc/FeNC催化剂表现出较高的FE(NH_(3))/FE(NO_(2)^(−))比值,是CuPc催化剂的50倍;同时CuPc/FeNC催化剂上NH3分电流密度是FeNC催化剂的1.5倍.进一步研究了NO_(3)^(–)RR中的串联反应机制,其中FeNC催化剂表现出较高的NO_(2)^(–)RR活性,并且有效抑制了析氢反应.此外,CuPc/FeNC催化剂和FeNC催化剂在NO_(2)^(−)RR中表现出类似的NH3分电流密度,这表明在NO_(3)^(−)RR中,CuPc/FeNC催化剂性能的提高来源于FeNC位点能够进一步还原CuPc位点产生的NO_(2)^(–).理论计算结果表明,FeNC比CuPc表现出更强的NO_(2)^(–)吸附活化能力,说明NO_(2)^(−)在FeNC上更容易进行加氢还原.NO_(3)^(−)RR反应全路径分析结果表明,对于^(*)NO_(3)还原到*NO2过程,CuPc相对于FeNC位点具有明显降低的反应自由能,说明CuPc有利于NO_(2)^(−)的生成;而FeNC位点在后续的^(*)NO_(2)还原合成^(*)NH_(3)过程中具有更低的反应自由能,这与实验结果一致.一系列非原位和原位表征证明了CuPc催化剂在高电位下存在少量金属颗粒析出,与CuPc催化剂在高电位下NH_(3)分电流密度快速增加结果一致.综上,本工作中CuPc和FeNC催化剂之间的协同作用弥补了各自的不足,通过串联反应机制,在低过电位下有效增加了NH_(3)的法拉第效率和电流密度,实现了高效的协同催化转化,为设计和合成高效催化剂提供了新思路.展开更多
Solid oxide electrolysis cell(SOEC) can electrochemically convert CO2 to CO at the gas-solid interface with a high current density and Faradaic efficiency, which has attracted increasing attentions in recent years.Exp...Solid oxide electrolysis cell(SOEC) can electrochemically convert CO2 to CO at the gas-solid interface with a high current density and Faradaic efficiency, which has attracted increasing attentions in recent years.Exploring efficient catalyst for electrochemical CO2 reduction reaction(CO2 RR) at the cathode is a grand challenge for the research and development of SOEC. Sr2Fe1.5Mo0.5O6-δ(SFM) is one kind of promising cathode materials for SOEC, but suffers from insufficient activity for CO2 RR. Herein, Gd0.2Ce0.8O1.9(GDC)nanoparticles were infiltrated onto the SFM surface to construct a composite GDC-SFM cathode and improve the CO2 RR performance in SOEC. The current density over the GDC infiltrated SFM cathode with a GDC loading of 12.8 wt% reaches 0.446 A cm-2 at 1.6 V and 800 °C, which is much higher than that over the SFM cathode(0.283 A cm-2). Temperature-programmed desorption of CO2 measurements suggest that the infiltration of GDC nanoparticles significantly increases the density of surface active sites and three phase boundaries(TPBs), which are beneficial for CO2 adsorption and subsequent conversion. Electrochemical impedance spectroscopy results indicate that the polarization resistance of 12.8 wt% GDCSFM cathode was obviously decreased from 0.46 to 0.30 cm^2 after the infiltration of GDC nanoparticles.展开更多
Gold, as the common current collector in solid oxide electrolysis cell(SOEC), is traditionally considered to be inert for oxygen evolution reaction at the anode of SOEC. Herein, gold nanoparticles were loaded onto con...Gold, as the common current collector in solid oxide electrolysis cell(SOEC), is traditionally considered to be inert for oxygen evolution reaction at the anode of SOEC. Herein, gold nanoparticles were loaded onto conventional strontium doped lanthanum manganite-yttria stabilized zirconia(LSM-YSZ) anode, which evidently improved the performance of oxygen evolution reaction at 800 °C. The current densities at 1.2 V and 1.4 V increased by 60.0% and 46.9%, respectively, after loading gold nanoparticles onto the LSM-YSZ anode. Physicochemical characterizations and electrochemical measurements suggested that the improved SOEC performance was attributed to the accelerated electron transfer of elementary process in anodic polarization reaction and the newly generated triple phase boundaries in gold nanoparticles-loaded LSMYSZ anode.展开更多
Co-electrolysis of CO2and H2O using high-temperature solid oxide electrolysis cells(SOECs) into valuable chemicals has attracted great attentions recently due to the high conversion and energy efficiency,which provide...Co-electrolysis of CO2and H2O using high-temperature solid oxide electrolysis cells(SOECs) into valuable chemicals has attracted great attentions recently due to the high conversion and energy efficiency,which provides opportunities of reducing CO2emission, mitigating global warming and storing intermittent renewable energies. A single SOEC typically consists of an ion conducting electrolyte, an anode and a cathode where the co-electrolysis reaction takes place. The high operating temperature and difficult activated carbon-oxygen double-bond of CO2put forward strict requirements for SOEC cathode. Great efforts are being devoted to develop suitable cathode materials with high catalytic activity and excellent long-term stability for CO2/H2O electro-reduction. The so far cathode material development is the key point of this review and alternative strategies of high-performance cathode material preparation is proposed. Understanding the mechanism of CO2/H2O electro-reduction is beneficial to highly active cathode design and optimization. Thus the possible reaction mechanism is also discussed. Especially, a method in combination with electrochemical impedance spectroscopy(EIS) measurement, distribution functions of relaxation times(DRT) calculation, complex nonlinear least square(CNLS) fitting and operando ambient pressure X-ray photoelectron spectroscopy(APXPS) characterization is introduced to correctly disclose the reaction mechanism of CO2/H2O co-electrolysis. Finally, different reaction modes of the CO2/H2O coelectrolysis in SOECs are summarized to offer new strategies to enhance the CO2conversion. Otherwise,developing SOECs operating at 300-600 °C can integrate the electrochemical reduction and the Fischer-Tropsch reaction to convert the CO2/H2O into more valuable chemicals, which will be a new research direction in the future.展开更多
Electrocatalysis is a process dealing with electrochemical reactions in the interconversion of chemical energy and electrical energy.Precise synthesis of catalytically active nanostructures is one of the key challenge...Electrocatalysis is a process dealing with electrochemical reactions in the interconversion of chemical energy and electrical energy.Precise synthesis of catalytically active nanostructures is one of the key challenges that hinder the practical application of many important energy‐related electrocatalytic reactions.Compared with conventional wet‐chemical,solid‐state and vapor deposition synthesis,electrochemical synthesis is a simple,fast,cost‐effective and precisely controllable method for the preparation of highly efficient catalytic materials.In this review,we summarize recent progress in the electrochemical synthesis of catalytic materials such as single atoms,spherical and shaped nanoparticles,nanosheets,nanowires,core‐shell nanostructures,layered nanomaterials,dendritic nanostructures,hierarchically porous nanostructures as well as composite nanostructures.Fundamental aspects of electrochemical synthesis and several main electrochemical synthesis methods are discussed.Structure‐performance correlations between electrochemically synthesized catalysts and their unique electrocatalytic properties are exemplified using selected examples.We offer the reader with a basic guide to the synthesis of highly efficient catalysts using electrochemical methods,and we propose some research challenges and future opportunities in this field.展开更多
Electrochemical CO2 reduction reaction(CO2RR)powered by renewable electricity has emerged as the most promising technique for CO2 conversion,making it possible to realize a carbon‐neutral cycle.Highly efficient,robus...Electrochemical CO2 reduction reaction(CO2RR)powered by renewable electricity has emerged as the most promising technique for CO2 conversion,making it possible to realize a carbon‐neutral cycle.Highly efficient,robust,and cost‐effective catalysts are highly demanded for the near‐future practical applications of CO2RR.Previous studies on atomically dispersed metal‐nitrogen(M‐Nx)sites constituted of earth abundant elements with maximum atom‐utilization efficiency have demonstrated their performance towards CO2RR.This review summarizes recent advances on a variety of M‐Nx sites‐containing transition metal‐centered macrocyclic complexes,metal organic frameworks,and M‐Nx‐doped carbon materials for efficient CO2RR,including both experimental and theoretical studies.The roles of metal centers,coordinated ligands,and conductive supports on the intrinsic activity and selectivity,together with the importance of reaction conditions for improved performance are discussed.The mechanisms of CO2RR over these M‐Nx‐containing materials are presented to provide useful guidance for the rational design of efficient catalysts towards CO2RR.展开更多
Nitrogen-doped carbon materials encapsulating 3 d transition metals are promising alternatives to replace noble metal Pt catalysts for efficiently catalyzing the oxygen reduction reaction(ORR). Herein, we use cobalt s...Nitrogen-doped carbon materials encapsulating 3 d transition metals are promising alternatives to replace noble metal Pt catalysts for efficiently catalyzing the oxygen reduction reaction(ORR). Herein, we use cobalt substituted perfluorosulfonic acid/polytetrafluoroethylene copolymer and dicyandiamide as the pyrolysis precursor to synthesize nitrogen-doped carbon nanotube(N–CNT) encapsulating cobalt nanoparticles hybrid material. The carbon layers and specific surface area of N–CNT have a critical role to the ORR performance due to the exposed active sites, determined by the mass ratio of the two precursors. The optimum hybrid material exhibits high ORR activity and stability, as well as excellent performance and durability in zinc–air battery.展开更多
Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an el...Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an electrolytic cell, constructed using phosphoric acid-doped polybenz- imidazole (PBI) membrane, which allowed operation at 170 ℃ Pt/C and PtMo/C with variable ratio of Pt/Mo were studied as the cathode catalysts. The results showed that PtMo/C catalysts significantly enhanced CO formation and inhibited CH4 formation compared with Pt/C catalyst. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy revealed that most Mo species existed as MoO3 in PtMo/C catalysts and the interaction between Pt and MoOx was likely responsible for the enhanced CO formation rate although these bicomponent catalysts in general had a larger particle size than Pt/C catalyst.展开更多
Copper-indium bimetallic catalysts with a dendritic structure are fabricated by a two-step electrodeposition method using a hydrogen evolution template for the CO2 electroreduction reaction(CO2RR).The dendritic Cu-In-...Copper-indium bimetallic catalysts with a dendritic structure are fabricated by a two-step electrodeposition method using a hydrogen evolution template for the CO2 electroreduction reaction(CO2RR).The dendritic Cu-In-30 catalyst electrodeposited for 30 min shows the highest specific surface area and exposes the most active sites,resulting in improved CO2RR activity.The dendritic Cu-In-30 catalyst exhibits distinctly higher formate partial current density(42.0 m A cm^-2)and Faradaic efficiency(87.4%)than those of the In-30 catalyst without the dendritic structure(the formate partial current density and Faradaic efficiency are 4.6 m A cm^-2 and 57.0%,respectively)at-0.85 V vs.reversible hydrogen electrode,ascribed to the increased specific surface area.The Cu-In-30 catalyst can maintain stable performance for 12 h during the CO2RR.In addition,the intrinsic current density of Cu-In-30 with the dendritic structure(4.8 m A cm^-2)is much higher than that of In-30 without the dendritic structure(2.1 m A cm^-2),indicating that the dendritic structure promotes the CO2RR,possibly due to additional coordination unsaturated atoms.展开更多
Zeolitic imidazolate frameworks(ZIFs) are widely employed in catalyst synthesis as parental materials for electrochemical energy storage and conversion. Herein, we have demonstrated a facile synthesis of highly effi...Zeolitic imidazolate frameworks(ZIFs) are widely employed in catalyst synthesis as parental materials for electrochemical energy storage and conversion. Herein, we have demonstrated a facile synthesis of highly efficient catalyst for oxygen reduction reaction in both alkaline and acidic medium, which is derived from ZIF-8 functionalized with ammonium ferric citrate via two-step pyrolysis in Ar and NHatmosphere.The results reveal that the catalytic activity improvement after NH3 pyrolysis benefits from mesoporedominated morphology and high utilization of Fe-containing active sites. The optimum catalyst shows excellent performance in zinc-air battery and polymer electrolyte membrane fuel cell tests.展开更多
Catalytic conversion of CO_(2)into chemicals and fuels is a viable method to reduce carbon emissions and achieve carbon neutrality.Through thermal catalysis,electrocatalysis,and photo(electro)catalysis,CO_(2)can be co...Catalytic conversion of CO_(2)into chemicals and fuels is a viable method to reduce carbon emissions and achieve carbon neutrality.Through thermal catalysis,electrocatalysis,and photo(electro)catalysis,CO_(2)can be converted into a wide range of valuable products,including CO,formic acid,methanol,methane,ethanol,acetic acid,propanol,light olefi ns,aromatics,and gasoline,as well as fi ne chemicals.In this mini-review,we summarize the recent progress in heterogeneous catalysis for CO_(2)conversion into chemicals and fuels and highlight some representative studies of diff erent conversion routes.The structure-performance correlations of typical catalytic materials used for the CO_(2)conversion reactions have been revealed by combining advanced in situ/operando spectroscopy and microscopy characterizations and density functional theory cal-culations.Catalytic selectivity toward a single CO_(2)reduction product/fraction should be further improved at an industrially relevant CO_(2)conversion rate with considerable stability in the future.展开更多
Doping enables manipulation of both the electrical and optical properties of halide perovskites.Herein,we incorporated Te^(4+) into Cs_(2)ZrCl_(6) single crystal,simultaneously preserving the vacancy-ordered structure...Doping enables manipulation of both the electrical and optical properties of halide perovskites.Herein,we incorporated Te^(4+) into Cs_(2)ZrCl_(6) single crystal,simultaneously preserving the vacancy-ordered structure,to obtain an efficient yellow-emitting perovskite with a near-unity photoluminescence quantum yield(PLQY≈97.6%).Te^(4+) doping modifies the hue and emission color of pristine Cs_(2)ZrCl_(6),generates new absorption channels,and successfully extends the excitation energy from<280 nm to 360-450 nm range.Detailed spectral characterizations,including ultrafast femtosecond transient absorption measurements,reveal that the bright yellow light is derived from triplet self-trapped excitons.Moreover,further tuning doping concentration enables Te-doped Cs_(2)ZrCl_(6) single crystals to exhibit efficient warm white light emission.This work provides a new perspective for the development and design of stable lead-free perovskites with highly efficient luminescence.展开更多
Feasible construction of cathode materials with highly dispersed active sites can extend the tri‐ple‐phase boundaries,and therefore leading to enhanced electrode kinetics for CO_(2) electrolysis in solid oxide elect...Feasible construction of cathode materials with highly dispersed active sites can extend the tri‐ple‐phase boundaries,and therefore leading to enhanced electrode kinetics for CO_(2) electrolysis in solid oxide electrolysis cell(SOEC).Herein,highly dispersed nickel species with low loading(1.0 wt%)were trapped within the La_(0.8)Sr_(0.2)FeO_(3)–δ‐Ce_(0.8)Sm_(0.2)O_(2)–δvia a facial mechanical milling ap‐proach,which demonstrated excellent CO_(2) electrolysis performance.The highly dispersed nickel species can significantly alter the electronic structures of the LSF‐SDC without affecting its porous network and facilitate oxygen vacancy formation,thus greatly promote the CO_(2) electrolysis perfor‐mance.The highest current density of 1.53 A·cm^(-2) could be achieved when operated under 800℃ at 1.6 V,which is about 91%higher than the LSF‐SDC counterpart.展开更多
With the increasing awareness of sustainable chemistry and green chemistry,catalytic conversion of carbon dioxide(CO_(2))into high value‐added and bulk chemicals is a promising tech‐nology that can utilize CO_(2) as...With the increasing awareness of sustainable chemistry and green chemistry,catalytic conversion of carbon dioxide(CO_(2))into high value‐added and bulk chemicals is a promising tech‐nology that can utilize CO_(2) as an ideal C1 source while simulta‐neously storing renewable energy.Despite being frustrated with its thermodynamic stability and kinetic inertness,CO_(2) has been tamed for triggering catalytic constructions of highly‐valued entities like important hydrocarbon fuels and fine chemicals,mainly aiding by two scenarios:CO_(2) reduction and CO_(2)‐involved organic synthesis.Accordingly,science,industry and govern‐ment agencies have been devoted to leverage these synthetic tools in targeting the catalytic conversion of CO_(2).Therefore,it motivates us to organize the special column of“Catalytic Con‐version of CO_(2)”.The column contains 14 papers,including 4 reviews,4 communications and 6 articles,which cover the frontiers and most of the research aspects of catalytic con‐version of CO_(2).展开更多
Replacing platinum for catalyzing hydrogen evolution reaction (HER) in acidic medium remains great chal- lenges. Herein, we prepared few-layered MoS2 by ball milling as an efficient catalyst for HER in acidic medium...Replacing platinum for catalyzing hydrogen evolution reaction (HER) in acidic medium remains great chal- lenges. Herein, we prepared few-layered MoS2 by ball milling as an efficient catalyst for HER in acidic medium, The activity of as-prepared MoS2 had a strong dependence on the ball milling time, Furthermore, Ketjen Black EC 300J was added into the ball-milled MoS2 followed by a second ball milling, and the resultant MoS2/carbon black hybrid material showed a much higher HER activity than MoS2 and carbon black alone. The enhanced activity of the MoS2/carbon black hybrid material was attributed to the increased abundance of catalytic edge sites of MoS) and excellent electrical coupling to the underlving carbon network.展开更多
Simultaneously achieving high activity,selectivity and stability for electrochemical CO_(2)reduction reaction(CO_(2)RR)remains great challenges.Herein,a phosphorus-modified Sn/Sn Oxcore/shell(P-Sn/SnO_x)catalyst,deriv...Simultaneously achieving high activity,selectivity and stability for electrochemical CO_(2)reduction reaction(CO_(2)RR)remains great challenges.Herein,a phosphorus-modified Sn/Sn Oxcore/shell(P-Sn/SnO_x)catalyst,derived from in situ electrochemical reduction of an amorphous Sn(HPO_(4))_(2) pre-catalyst,exhibits high CO_(2)RR performance.The total Faradaic efficiency(FE)of C_(1) products is close to 100%in a broad potential range from-0.49 to-1.02 V vs.reversible hydrogen electrode,and a total current density of 315.0 m A cm^(-2)is achieved.Moreover,the P-Sn/SnO_(x) catalyst maintains a formate FE of~90%for 120 h.Density functional theory calculations suggest that the phosphorus-modified Sn/SnO_(x) core/shell structure effectively facilitates formate production by enhancing CO_(2)adsorption and improving free energy profile of formate formation.展开更多
Hydrogen-bonded organic frameworks(HOFs),an emerging porous macrocyclic materials linked by hydrogen-bond,hold potential for gas separation and storage,sensors,optical,and electrocatalysts.Here,HOF-based electrocataly...Hydrogen-bonded organic frameworks(HOFs),an emerging porous macrocyclic materials linked by hydrogen-bond,hold potential for gas separation and storage,sensors,optical,and electrocatalysts.Here,HOF-based electrocatalysts are rationally developed for nitrates reduction to ammonia,allowing not only to regulate wastewater pollution but also to accomplish carbon-neutral ammonia(NH_(3))synthesis.We preform high-throughput computational screening of thirty-six HOFs with various metals as active sites,denoted as HOF-M1,for nitrate reduction reaction(NO_(3)RR)toward NH_(3).We have implemented a hierarchical four-step screening strategy,and ultimately,HOF-Ti1 was selected based on its exceptional catalytic activity and selectivity in the NO_(3)RR process.Through additional analysis,we discovered that the d band center of the active metal sites serves as an effective parameter for designing and predicting the performance of HOFs in NO_(3)RR.This research not only showcases the immense potential of electrocatalysis in transforming NO_(3)RR into NH_(3)but also provides researchers with a compelling incentive to undertake further experimental investigations.展开更多
一氧化氮电还原反应将工业废气转化为有价值的氨,表现出极具潜力的应用前景.在本工作中,我们合成了具有高比表面积和丰富缺陷的氧化铜纳米片催化剂,在流动池中氨法拉第效率达到92.1%,在-0.2 V vs.RHE时,一氧化氮电还原电流密度和氨的生...一氧化氮电还原反应将工业废气转化为有价值的氨,表现出极具潜力的应用前景.在本工作中,我们合成了具有高比表面积和丰富缺陷的氧化铜纳米片催化剂,在流动池中氨法拉第效率达到92.1%,在-0.2 V vs.RHE时,一氧化氮电还原电流密度和氨的生产速率分别达到1.1 A cm^(-2)和7356μmol cm^(-2)h^(-1).在电流密度超过400 m A cm-2时,氨法拉第效率在50小时保持在80%以上.准原位X射线光电子能谱和原位X射线吸收光谱结果表明氧化铜纳米片在一氧化氮电还原过程中被电化学还原成单质铜.与铜纳米颗粒相比,氧化铜纳米片展现出较高的电化学表面积和一氧化氮电还原的内在活性.展开更多
文摘氨(NH_(3))作为重要的化学品和能源储存介质,需求量与日俱增.本文旨在通过电化学硝酸根还原反应(NO_(3)^(−)RR),将NO_(3)^(−)转化为NH3,不仅解决了NO_(3)^(−)引起的环境污染问题,又可以满足对NH_(3)的迫切需求.然而,NO_(3)^(−)RR涉及多个电子和质子转移过程,其中,NO_(2)^(−)是NO_(3)^(−)活化转化和深度还原合成NH_(3)的重要中间体.酞菁铜(CuPc)能够高效地活化转化NO_(3)^(−)为NO_(2)^(−),但在低过电位时无法有效地将NO2−还原为NH3,难以获得较高的氨法拉第效率(FENH3)和分电流密度.而氮配位的铁单原子催化剂(FeNC)则有较好的NO_(2)^(−)吸附活化特性.因此,利用双组分催化剂之间的协同作用以实现高效NO_(3)^(−)RR的活性和选择性是本文的主要研究思路.本文设计了CuPc/FeNC串联催化剂,利用CuPc和FeNC对NO_(3)^(−)和NO_(2)^(−)的吸附活化能力的差异,实现了高效的协同催化转化.X射线衍射、高角环形暗场扫描透射电镜、X射线光电子能谱及X射线吸收谱结果表明,FeNC催化剂中Fe原子均匀分布于ZIF-8热解后的基底.通过将FeNC和CuPc负载于气体扩散电极,在流动电解池中完成NO_(3)^(−)RR.CuPc/FeNC催化剂在较低电势区间中能够实现接近100%的NH3法拉第效率,同时在−0.57 V vs.RHE时达到273 mA cm–2的NH3分电流密度,并且在整个电势范围内有效地抑制了NO_(2)^(–)聚集.与单组分催化剂CuPc和FeNC对比结果表明,在−0.53 V vs.RHE时,CuPc/FeNC催化剂表现出较高的FE(NH_(3))/FE(NO_(2)^(−))比值,是CuPc催化剂的50倍;同时CuPc/FeNC催化剂上NH3分电流密度是FeNC催化剂的1.5倍.进一步研究了NO_(3)^(–)RR中的串联反应机制,其中FeNC催化剂表现出较高的NO_(2)^(–)RR活性,并且有效抑制了析氢反应.此外,CuPc/FeNC催化剂和FeNC催化剂在NO_(2)^(−)RR中表现出类似的NH3分电流密度,这表明在NO_(3)^(−)RR中,CuPc/FeNC催化剂性能的提高来源于FeNC位点能够进一步还原CuPc位点产生的NO_(2)^(–).理论计算结果表明,FeNC比CuPc表现出更强的NO_(2)^(–)吸附活化能力,说明NO_(2)^(−)在FeNC上更容易进行加氢还原.NO_(3)^(−)RR反应全路径分析结果表明,对于^(*)NO_(3)还原到*NO2过程,CuPc相对于FeNC位点具有明显降低的反应自由能,说明CuPc有利于NO_(2)^(−)的生成;而FeNC位点在后续的^(*)NO_(2)还原合成^(*)NH_(3)过程中具有更低的反应自由能,这与实验结果一致.一系列非原位和原位表征证明了CuPc催化剂在高电位下存在少量金属颗粒析出,与CuPc催化剂在高电位下NH_(3)分电流密度快速增加结果一致.综上,本工作中CuPc和FeNC催化剂之间的协同作用弥补了各自的不足,通过串联反应机制,在低过电位下有效增加了NH_(3)的法拉第效率和电流密度,实现了高效的协同催化转化,为设计和合成高效催化剂提供了新思路.
基金国家重点研发计划(2021YFA1502400)国家自然科学基金(22272176,22002166,22125205,22072146,22002158)+2 种基金中国科学院洁净能源创新研究院合作基金(DNL202007)榆林学院-中国科学院洁净能源创新研究院联合基金(YLU-DNL Fund 2022008)中国科学院青年创新促进计划(Y201938)资助项目。
基金financial support from the Ministry of Science and Technology of China(Grant no.2017YFA0700102)the National Natural Science Foundation of China(Grants nos.21573222,91545202 and 21703237)+3 种基金Dalian Institute of Chemical Physics(Grant no.DICP DMTO201702)Dalian Outstanding Young Scientist Foundation(Grant no.2017RJ03)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant no.XDB17020200)the financial support from CAS Youth Innovation Promotion(Grant no.2015145)
文摘Solid oxide electrolysis cell(SOEC) can electrochemically convert CO2 to CO at the gas-solid interface with a high current density and Faradaic efficiency, which has attracted increasing attentions in recent years.Exploring efficient catalyst for electrochemical CO2 reduction reaction(CO2 RR) at the cathode is a grand challenge for the research and development of SOEC. Sr2Fe1.5Mo0.5O6-δ(SFM) is one kind of promising cathode materials for SOEC, but suffers from insufficient activity for CO2 RR. Herein, Gd0.2Ce0.8O1.9(GDC)nanoparticles were infiltrated onto the SFM surface to construct a composite GDC-SFM cathode and improve the CO2 RR performance in SOEC. The current density over the GDC infiltrated SFM cathode with a GDC loading of 12.8 wt% reaches 0.446 A cm-2 at 1.6 V and 800 °C, which is much higher than that over the SFM cathode(0.283 A cm-2). Temperature-programmed desorption of CO2 measurements suggest that the infiltration of GDC nanoparticles significantly increases the density of surface active sites and three phase boundaries(TPBs), which are beneficial for CO2 adsorption and subsequent conversion. Electrochemical impedance spectroscopy results indicate that the polarization resistance of 12.8 wt% GDCSFM cathode was obviously decreased from 0.46 to 0.30 cm^2 after the infiltration of GDC nanoparticles.
基金financial support from the National Key R&D Program of China (Grant 2017YFA0700102)the National Natural Science Foundation of China (Grants 21573222 and 91545202)+4 种基金Dalian National Laboratory for Clean Energy (DNL180404)Dalian Institute of Chemical Physics (Grant DICP DMTO201702)Dalian Outstanding Young Scientist Foundation (Grant 2017RJ03)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant no. XDB17020200)the financial support from CAS Youth Innovation Promotion (Grant no. 2015145)
文摘Gold, as the common current collector in solid oxide electrolysis cell(SOEC), is traditionally considered to be inert for oxygen evolution reaction at the anode of SOEC. Herein, gold nanoparticles were loaded onto conventional strontium doped lanthanum manganite-yttria stabilized zirconia(LSM-YSZ) anode, which evidently improved the performance of oxygen evolution reaction at 800 °C. The current densities at 1.2 V and 1.4 V increased by 60.0% and 46.9%, respectively, after loading gold nanoparticles onto the LSM-YSZ anode. Physicochemical characterizations and electrochemical measurements suggested that the improved SOEC performance was attributed to the accelerated electron transfer of elementary process in anodic polarization reaction and the newly generated triple phase boundaries in gold nanoparticles-loaded LSMYSZ anode.
基金financial support from the Ministry of Science and Technology of China (Grants 2016YFB0600901 and 2013CB933100)the National Natural Science Foundation of China (Grants 21573222 and 91545202)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB17020200)China Postdoctoral Science Foundation (NO. 2016M600220)the financial support from CAS Youth Innovation Promotion
文摘Co-electrolysis of CO2and H2O using high-temperature solid oxide electrolysis cells(SOECs) into valuable chemicals has attracted great attentions recently due to the high conversion and energy efficiency,which provides opportunities of reducing CO2emission, mitigating global warming and storing intermittent renewable energies. A single SOEC typically consists of an ion conducting electrolyte, an anode and a cathode where the co-electrolysis reaction takes place. The high operating temperature and difficult activated carbon-oxygen double-bond of CO2put forward strict requirements for SOEC cathode. Great efforts are being devoted to develop suitable cathode materials with high catalytic activity and excellent long-term stability for CO2/H2O electro-reduction. The so far cathode material development is the key point of this review and alternative strategies of high-performance cathode material preparation is proposed. Understanding the mechanism of CO2/H2O electro-reduction is beneficial to highly active cathode design and optimization. Thus the possible reaction mechanism is also discussed. Especially, a method in combination with electrochemical impedance spectroscopy(EIS) measurement, distribution functions of relaxation times(DRT) calculation, complex nonlinear least square(CNLS) fitting and operando ambient pressure X-ray photoelectron spectroscopy(APXPS) characterization is introduced to correctly disclose the reaction mechanism of CO2/H2O co-electrolysis. Finally, different reaction modes of the CO2/H2O coelectrolysis in SOECs are summarized to offer new strategies to enhance the CO2conversion. Otherwise,developing SOECs operating at 300-600 °C can integrate the electrochemical reduction and the Fischer-Tropsch reaction to convert the CO2/H2O into more valuable chemicals, which will be a new research direction in the future.
文摘Electrocatalysis is a process dealing with electrochemical reactions in the interconversion of chemical energy and electrical energy.Precise synthesis of catalytically active nanostructures is one of the key challenges that hinder the practical application of many important energy‐related electrocatalytic reactions.Compared with conventional wet‐chemical,solid‐state and vapor deposition synthesis,electrochemical synthesis is a simple,fast,cost‐effective and precisely controllable method for the preparation of highly efficient catalytic materials.In this review,we summarize recent progress in the electrochemical synthesis of catalytic materials such as single atoms,spherical and shaped nanoparticles,nanosheets,nanowires,core‐shell nanostructures,layered nanomaterials,dendritic nanostructures,hierarchically porous nanostructures as well as composite nanostructures.Fundamental aspects of electrochemical synthesis and several main electrochemical synthesis methods are discussed.Structure‐performance correlations between electrochemically synthesized catalysts and their unique electrocatalytic properties are exemplified using selected examples.We offer the reader with a basic guide to the synthesis of highly efficient catalysts using electrochemical methods,and we propose some research challenges and future opportunities in this field.
基金supported by the National Key R&D Program of China(2017YFA0700102)the National Natural Science Foundation of China(21573222 and 91545202)+1 种基金the Outstanding Youth Talent Project of Dalian(2017RJ03)the DMTO Project of Dalian Institute of Chemical Physics,CAS(DICP DMTO201702),the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020200),the Youth Innovation Promotion Association,CAS(2015145)~~
文摘Electrochemical CO2 reduction reaction(CO2RR)powered by renewable electricity has emerged as the most promising technique for CO2 conversion,making it possible to realize a carbon‐neutral cycle.Highly efficient,robust,and cost‐effective catalysts are highly demanded for the near‐future practical applications of CO2RR.Previous studies on atomically dispersed metal‐nitrogen(M‐Nx)sites constituted of earth abundant elements with maximum atom‐utilization efficiency have demonstrated their performance towards CO2RR.This review summarizes recent advances on a variety of M‐Nx sites‐containing transition metal‐centered macrocyclic complexes,metal organic frameworks,and M‐Nx‐doped carbon materials for efficient CO2RR,including both experimental and theoretical studies.The roles of metal centers,coordinated ligands,and conductive supports on the intrinsic activity and selectivity,together with the importance of reaction conditions for improved performance are discussed.The mechanisms of CO2RR over these M‐Nx‐containing materials are presented to provide useful guidance for the rational design of efficient catalysts towards CO2RR.
基金financial support from the Ministry of Science and Technology of China(Grants 2016YFB0600901 and 2013CB933100)the National Natural Science Foundation of China(Grants 21573222 and 91545202)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB17020200)financial support from CAS Youth Innovation Promotion(Grant No.2015145)
文摘Nitrogen-doped carbon materials encapsulating 3 d transition metals are promising alternatives to replace noble metal Pt catalysts for efficiently catalyzing the oxygen reduction reaction(ORR). Herein, we use cobalt substituted perfluorosulfonic acid/polytetrafluoroethylene copolymer and dicyandiamide as the pyrolysis precursor to synthesize nitrogen-doped carbon nanotube(N–CNT) encapsulating cobalt nanoparticles hybrid material. The carbon layers and specific surface area of N–CNT have a critical role to the ORR performance due to the exposed active sites, determined by the mass ratio of the two precursors. The optimum hybrid material exhibits high ORR activity and stability, as well as excellent performance and durability in zinc–air battery.
基金supported by the Ministry of Science and Technology of China(Grant No:2012CB215500 and 2013CB933100)the National Natural Science Foundation of China(Grant No:21103178 and 21033009)
文摘Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an electrolytic cell, constructed using phosphoric acid-doped polybenz- imidazole (PBI) membrane, which allowed operation at 170 ℃ Pt/C and PtMo/C with variable ratio of Pt/Mo were studied as the cathode catalysts. The results showed that PtMo/C catalysts significantly enhanced CO formation and inhibited CH4 formation compared with Pt/C catalyst. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy revealed that most Mo species existed as MoO3 in PtMo/C catalysts and the interaction between Pt and MoOx was likely responsible for the enhanced CO formation rate although these bicomponent catalysts in general had a larger particle size than Pt/C catalyst.
文摘Copper-indium bimetallic catalysts with a dendritic structure are fabricated by a two-step electrodeposition method using a hydrogen evolution template for the CO2 electroreduction reaction(CO2RR).The dendritic Cu-In-30 catalyst electrodeposited for 30 min shows the highest specific surface area and exposes the most active sites,resulting in improved CO2RR activity.The dendritic Cu-In-30 catalyst exhibits distinctly higher formate partial current density(42.0 m A cm^-2)and Faradaic efficiency(87.4%)than those of the In-30 catalyst without the dendritic structure(the formate partial current density and Faradaic efficiency are 4.6 m A cm^-2 and 57.0%,respectively)at-0.85 V vs.reversible hydrogen electrode,ascribed to the increased specific surface area.The Cu-In-30 catalyst can maintain stable performance for 12 h during the CO2RR.In addition,the intrinsic current density of Cu-In-30 with the dendritic structure(4.8 m A cm^-2)is much higher than that of In-30 without the dendritic structure(2.1 m A cm^-2),indicating that the dendritic structure promotes the CO2RR,possibly due to additional coordination unsaturated atoms.
基金supported by the National Natural Science Foundation of China(Grants 21573222,21622607,91545202 and U1532117)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB17020200)+1 种基金CAS Youth Innovation PromotionK.C.Wong Education Foundation in Ningbo University
文摘Zeolitic imidazolate frameworks(ZIFs) are widely employed in catalyst synthesis as parental materials for electrochemical energy storage and conversion. Herein, we have demonstrated a facile synthesis of highly efficient catalyst for oxygen reduction reaction in both alkaline and acidic medium, which is derived from ZIF-8 functionalized with ammonium ferric citrate via two-step pyrolysis in Ar and NHatmosphere.The results reveal that the catalytic activity improvement after NH3 pyrolysis benefits from mesoporedominated morphology and high utilization of Fe-containing active sites. The optimum catalyst shows excellent performance in zinc-air battery and polymer electrolyte membrane fuel cell tests.
基金supported by the National Key R&D Program of China(2021YFA1501503)the National Natural Science Foundation of China(Nos.22002155,22125205,92045302)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020200)the CAS Youth Innovation Promotion(Y201938)the Natural Science Foundation of Liaoning Province(2021-MS-022)the High-Level Talents Innovation Project of Dalian City(2020RQ038).
文摘Catalytic conversion of CO_(2)into chemicals and fuels is a viable method to reduce carbon emissions and achieve carbon neutrality.Through thermal catalysis,electrocatalysis,and photo(electro)catalysis,CO_(2)can be converted into a wide range of valuable products,including CO,formic acid,methanol,methane,ethanol,acetic acid,propanol,light olefi ns,aromatics,and gasoline,as well as fi ne chemicals.In this mini-review,we summarize the recent progress in heterogeneous catalysis for CO_(2)conversion into chemicals and fuels and highlight some representative studies of diff erent conversion routes.The structure-performance correlations of typical catalytic materials used for the CO_(2)conversion reactions have been revealed by combining advanced in situ/operando spectroscopy and microscopy characterizations and density functional theory cal-culations.Catalytic selectivity toward a single CO_(2)reduction product/fraction should be further improved at an industrially relevant CO_(2)conversion rate with considerable stability in the future.
基金supported by the National Natural Science Foundation of China (21833009, 22088102)the National Key Research and Development Program of China (2017YFA0204800)+5 种基金the Scientific Instrument Developing Project of the Chinese Academy of Sciences (YJKYYQ20190003)the Innovation Foundation of Dalian Institute of Chemical Physics (DICP I202127)the Liao Ning Revitalization Talents Program (XLYC1802126, XLYC1907053)the Dalian City Foundation for Science and Technology Innovation (2019J12GX031)the CAS Youth Innovation Promotion Association (2018220)China Postdoctoral Science Foundation (2020 M670800)。
文摘Doping enables manipulation of both the electrical and optical properties of halide perovskites.Herein,we incorporated Te^(4+) into Cs_(2)ZrCl_(6) single crystal,simultaneously preserving the vacancy-ordered structure,to obtain an efficient yellow-emitting perovskite with a near-unity photoluminescence quantum yield(PLQY≈97.6%).Te^(4+) doping modifies the hue and emission color of pristine Cs_(2)ZrCl_(6),generates new absorption channels,and successfully extends the excitation energy from<280 nm to 360-450 nm range.Detailed spectral characterizations,including ultrafast femtosecond transient absorption measurements,reveal that the bright yellow light is derived from triplet self-trapped excitons.Moreover,further tuning doping concentration enables Te-doped Cs_(2)ZrCl_(6) single crystals to exhibit efficient warm white light emission.This work provides a new perspective for the development and design of stable lead-free perovskites with highly efficient luminescence.
文摘Feasible construction of cathode materials with highly dispersed active sites can extend the tri‐ple‐phase boundaries,and therefore leading to enhanced electrode kinetics for CO_(2) electrolysis in solid oxide electrolysis cell(SOEC).Herein,highly dispersed nickel species with low loading(1.0 wt%)were trapped within the La_(0.8)Sr_(0.2)FeO_(3)–δ‐Ce_(0.8)Sm_(0.2)O_(2)–δvia a facial mechanical milling ap‐proach,which demonstrated excellent CO_(2) electrolysis performance.The highly dispersed nickel species can significantly alter the electronic structures of the LSF‐SDC without affecting its porous network and facilitate oxygen vacancy formation,thus greatly promote the CO_(2) electrolysis perfor‐mance.The highest current density of 1.53 A·cm^(-2) could be achieved when operated under 800℃ at 1.6 V,which is about 91%higher than the LSF‐SDC counterpart.
文摘With the increasing awareness of sustainable chemistry and green chemistry,catalytic conversion of carbon dioxide(CO_(2))into high value‐added and bulk chemicals is a promising tech‐nology that can utilize CO_(2) as an ideal C1 source while simulta‐neously storing renewable energy.Despite being frustrated with its thermodynamic stability and kinetic inertness,CO_(2) has been tamed for triggering catalytic constructions of highly‐valued entities like important hydrocarbon fuels and fine chemicals,mainly aiding by two scenarios:CO_(2) reduction and CO_(2)‐involved organic synthesis.Accordingly,science,industry and govern‐ment agencies have been devoted to leverage these synthetic tools in targeting the catalytic conversion of CO_(2).Therefore,it motivates us to organize the special column of“Catalytic Con‐version of CO_(2)”.The column contains 14 papers,including 4 reviews,4 communications and 6 articles,which cover the frontiers and most of the research aspects of catalytic con‐version of CO_(2).
基金the financial support from the Ministry of Science and Technology of China (grants 2012CB215500 and 2013CB933100)the National Natural Science Foundation of China (grants 21573222 and 21103178)
文摘Replacing platinum for catalyzing hydrogen evolution reaction (HER) in acidic medium remains great chal- lenges. Herein, we prepared few-layered MoS2 by ball milling as an efficient catalyst for HER in acidic medium, The activity of as-prepared MoS2 had a strong dependence on the ball milling time, Furthermore, Ketjen Black EC 300J was added into the ball-milled MoS2 followed by a second ball milling, and the resultant MoS2/carbon black hybrid material showed a much higher HER activity than MoS2 and carbon black alone. The enhanced activity of the MoS2/carbon black hybrid material was attributed to the increased abundance of catalytic edge sites of MoS) and excellent electrical coupling to the underlving carbon network.
基金supported by the National Key R&D Program of China (2021YFA1501503)the National Natural Science Foundation of China (22125205,22002155,22002158,92045302)+5 种基金the“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21070613)the Fundamental Research Funds for the Central Universities (20720220008)the China Postdoctoral Science Foundation (2019M661142)the Natural Science Foundation of Liaoning Province (2021-MS-022)the High-Level Talents Innovation Project of Dalian City (2020RQ038)the support from the Photon Science Center for Carbon Neutrality。
文摘Simultaneously achieving high activity,selectivity and stability for electrochemical CO_(2)reduction reaction(CO_(2)RR)remains great challenges.Herein,a phosphorus-modified Sn/Sn Oxcore/shell(P-Sn/SnO_x)catalyst,derived from in situ electrochemical reduction of an amorphous Sn(HPO_(4))_(2) pre-catalyst,exhibits high CO_(2)RR performance.The total Faradaic efficiency(FE)of C_(1) products is close to 100%in a broad potential range from-0.49 to-1.02 V vs.reversible hydrogen electrode,and a total current density of 315.0 m A cm^(-2)is achieved.Moreover,the P-Sn/SnO_(x) catalyst maintains a formate FE of~90%for 120 h.Density functional theory calculations suggest that the phosphorus-modified Sn/SnO_(x) core/shell structure effectively facilitates formate production by enhancing CO_(2)adsorption and improving free energy profile of formate formation.
基金financial support from the National Key R&D Program of China(Grant 2022YFA1504000)the National Natural Science Foundation of China(Grants 22125205,22002166,22272176,22072146 and 22002158)+2 种基金the Fundamental Research Funds for the Central Universities(20720220008)the Dalian National Laboratory for Clean Energy(DNL202007,DNL201923)the financial support from the CAS Youth Innovation Promotion(Grant Y201938)。
文摘Hydrogen-bonded organic frameworks(HOFs),an emerging porous macrocyclic materials linked by hydrogen-bond,hold potential for gas separation and storage,sensors,optical,and electrocatalysts.Here,HOF-based electrocatalysts are rationally developed for nitrates reduction to ammonia,allowing not only to regulate wastewater pollution but also to accomplish carbon-neutral ammonia(NH_(3))synthesis.We preform high-throughput computational screening of thirty-six HOFs with various metals as active sites,denoted as HOF-M1,for nitrate reduction reaction(NO_(3)RR)toward NH_(3).We have implemented a hierarchical four-step screening strategy,and ultimately,HOF-Ti1 was selected based on its exceptional catalytic activity and selectivity in the NO_(3)RR process.Through additional analysis,we discovered that the d band center of the active metal sites serves as an effective parameter for designing and predicting the performance of HOFs in NO_(3)RR.This research not only showcases the immense potential of electrocatalysis in transforming NO_(3)RR into NH_(3)but also provides researchers with a compelling incentive to undertake further experimental investigations.
基金supported by the National Key R&D Program of China (2023YFA1508002)the National Natural Science Foundation of China (22125205 and 92015302)+2 种基金the Fundamental Research Funds for the Central Universities (20720220008)Dalian National Laboratory for Clean Energy (DNL201923)the Photon Science Center for Carbon Neutrality。
文摘一氧化氮电还原反应将工业废气转化为有价值的氨,表现出极具潜力的应用前景.在本工作中,我们合成了具有高比表面积和丰富缺陷的氧化铜纳米片催化剂,在流动池中氨法拉第效率达到92.1%,在-0.2 V vs.RHE时,一氧化氮电还原电流密度和氨的生产速率分别达到1.1 A cm^(-2)和7356μmol cm^(-2)h^(-1).在电流密度超过400 m A cm-2时,氨法拉第效率在50小时保持在80%以上.准原位X射线光电子能谱和原位X射线吸收光谱结果表明氧化铜纳米片在一氧化氮电还原过程中被电化学还原成单质铜.与铜纳米颗粒相比,氧化铜纳米片展现出较高的电化学表面积和一氧化氮电还原的内在活性.