期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Identification of banana leaf disease based on KVA and GR-ARNet
1
作者 Jinsheng Deng Weiqi Huang +3 位作者 guoxiong zhou Yahui Hu Liujun Li Yanfeng Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3554-3575,共22页
Banana is a significant crop,and three banana leaf diseases,including Sigatoka,Cordana and Pestalotiopsis,have the potential to have a serious impact on banana production.Existing studies are insufficient to provide a... Banana is a significant crop,and three banana leaf diseases,including Sigatoka,Cordana and Pestalotiopsis,have the potential to have a serious impact on banana production.Existing studies are insufficient to provide a reliable method for accurately identifying banana leaf diseases.Therefore,this paper proposes a novel method to identify banana leaf diseases.First,a new algorithm called K-scale VisuShrink algorithm(KVA)is proposed to denoise banana leaf images.The proposed algorithm introduces a new decomposition scale K based on the semi-soft and middle course thresholds,the ideal threshold solution is obtained and substituted with the newly established threshold function to obtain a less noisy banana leaf image.Then,this paper proposes a novel network for image identification called Ghost ResNeSt-Attention RReLU-Swish Net(GR-ARNet)based on Resnet50.In this,the Ghost Module is implemented to improve the network's effectiveness in extracting deep feature information on banana leaf diseases and the identification speed;the ResNeSt Module adjusts the weight of each channel,increasing the ability of banana disease feature extraction and effectively reducing the error rate of similar disease identification;the model's computational speed is increased using the hybrid activation function of RReLU and Swish.Our model achieves an average accuracy of 96.98%and a precision of 89.31%applied to 13,021 images,demonstrating that the proposed method can effectively identify banana leaf diseases. 展开更多
关键词 banana leaf diseases image denoising Ghost Module Res Ne St Module Convolutional Neural Networks GR-ARNet
下载PDF
巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制
2
作者 王小红 钱晶 +8 位作者 翁文俊 周国雄 朱顺星 祁小鸣 刘春 王萍 沈伟 程睿智 秦璟灏 《中华消化病与影像杂志(电子版)》 2023年第6期422-426,共5页
目的研究巯基丙酮酸硫基转移酶(MPST)调控核因子κB(NF-κB)信号介导自噬对重症急性胰腺炎(SAP)大鼠的影响。方法将50只SD大鼠随机分为Sham组、SAP组(重症急性胰腺炎造模)、SAP+AAV-NC组(AAV对照病毒注射+SAP造模)、SAP+AAV-MPST OE组(A... 目的研究巯基丙酮酸硫基转移酶(MPST)调控核因子κB(NF-κB)信号介导自噬对重症急性胰腺炎(SAP)大鼠的影响。方法将50只SD大鼠随机分为Sham组、SAP组(重症急性胰腺炎造模)、SAP+AAV-NC组(AAV对照病毒注射+SAP造模)、SAP+AAV-MPST OE组(AAV MPST过表达病毒注射+SAP造模)和SAP+AAV-MPST shRNA组(AAV MPST敲除病毒注射+SAP造模)。分别采用HE染色和胰腺组织损伤评分评价胰腺炎病情严重程度;电镜观察胰腺组织自噬泡;比色法检测血清淀粉酶和脂肪酶的活性;ELISA法检测胰腺组织IL-6表达水平;Western blot检测胰腺组织MPST、LC3Ⅱ/I、beclin1、ATG5、p-NF-κB、NF-κB、β-actin蛋白表达水平。结果与SAP组相比,SAP+AAV-MPST OE组大鼠胰腺损伤评分、自噬泡数量、血清淀粉酶和脂肪酶活性水平、IL-6水平、MPST、LC3Ⅱ/I、beclin1、ATG5和p-NF-κB/NF-κB水平显著升高,而SAP+AAV-MPST shRNA组大鼠这些指标均显著降低(P<0.01)。结论MPST可通过NF-κB信号诱导胰腺组织自噬和炎症反应,进而促进SAP病情;抑制MPST对SAP的治疗具有重要意义。 展开更多
关键词 重症急性胰腺炎 巯基丙酮酸硫基转移酶 自噬 核因子ΚB 大鼠 SD
原文传递
An Effective Image-Based Tomato Leaf Disease Segmentation Method Using MC-UNet
3
作者 Yubao Deng Haoran Xi +4 位作者 guoxiong zhou Aibin Chen Yanfeng Wang Liujun Li Yahui Hu 《Plant Phenomics》 SCIE EI CSCD 2023年第2期268-284,共17页
Tomato disease control is an urgent requirement in the field of intellectual agriculture,and one of the keys to it is quantitative identification and precise segmentation of tomato leaf diseases.Some diseased areas on... Tomato disease control is an urgent requirement in the field of intellectual agriculture,and one of the keys to it is quantitative identification and precise segmentation of tomato leaf diseases.Some diseased areas on tomato leaves are tiny and may go unnoticed during segmentation.Blurred edge also makes the segmentation accuracy poor.Based on UNet,we propose an effective image-based tomato leaf disease segmentation method called Cross-layer Attention Fusion Mechanism combined with Multi-scale Convolution Module(MC-UNet).First,a Multi-scale Convolution Module is proposed.This module obtains multiscale information about tomato disease by employing 3 convolution kernels of different sizes,and it highlights the edge feature information of tomato disease using the Squeeze-and-Excitation Module.Second,a Cross-layer Attention Fusion Mechanism is proposed.This mechanism highlights tomato leaf disease locations via gating structure and fusion operation.Then,we employ SoftPool rather than MaxPool to retain valid information on tomato leaves.Finally,we use the SeLU function appropriately to avoid network neuron dropout.We compared MC-UNet to the existing segmentation network on our self-built tomato leaf disease segmentation dataset and MC-UNet achieved 91.32%accuracy and 6.67M parameters.Our method achieves good results for tomato leaf disease segmentation,which demonstrates the effectiveness of the proposed methods. 展开更多
关键词 NETWORK PRECISE SIZES
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部