Copper tailings constitute a large proportion of mine wastes. Some of the copper tailings can be recycled to recover valuable minerals. In this paper, a copper tailing was studied through the chemical analysis method,...Copper tailings constitute a large proportion of mine wastes. Some of the copper tailings can be recycled to recover valuable minerals. In this paper, a copper tailing was studied through the chemical analysis method, Xray diffraction and scanning electron microscope-energy dispersive spectrum. It turned out that chalcopyrite(Cu) and pyrite(S) were the main recoverable minerals in the tailing. In order to separate chalcopyrite from pyrite in low pulp pH, ammonium humate(AH) was singled out as the effective regulator. The depression mechanism of AH on the flotation of pyrite was proved by FTIR spectrum and XPS spectrum, demonstrating that there was a chemical adsorption between AH and pyrite. By Response Surface Methodology(RSM), the interaction between AH, pulp pH and iso-butyl ethionine(Z200) was discussed. It was illustrated that the optimal dosage of AH was 1678 g·t^(-1) involving both the recovery of Cu and S. The point prediction by RSM and the closed-circuit flotation displayed that the qualified Cu concentrate and S concentrate could be obtained from the copper tailing.The study indicated that AH was a promising pyrite depressor in the low pulp pH from copper tailings.展开更多
基金Supported by the National Natural Science Foundation of China(51202249)the National High Technology Research and Development Program of China(2011AA06A104)the National Science&Technology Pillar Program during the 12th Five-year Plan Period(2012BAB08B04)
文摘Copper tailings constitute a large proportion of mine wastes. Some of the copper tailings can be recycled to recover valuable minerals. In this paper, a copper tailing was studied through the chemical analysis method, Xray diffraction and scanning electron microscope-energy dispersive spectrum. It turned out that chalcopyrite(Cu) and pyrite(S) were the main recoverable minerals in the tailing. In order to separate chalcopyrite from pyrite in low pulp pH, ammonium humate(AH) was singled out as the effective regulator. The depression mechanism of AH on the flotation of pyrite was proved by FTIR spectrum and XPS spectrum, demonstrating that there was a chemical adsorption between AH and pyrite. By Response Surface Methodology(RSM), the interaction between AH, pulp pH and iso-butyl ethionine(Z200) was discussed. It was illustrated that the optimal dosage of AH was 1678 g·t^(-1) involving both the recovery of Cu and S. The point prediction by RSM and the closed-circuit flotation displayed that the qualified Cu concentrate and S concentrate could be obtained from the copper tailing.The study indicated that AH was a promising pyrite depressor in the low pulp pH from copper tailings.