期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A tectonic geodesy mapping software based on QGIS 被引量:1
1
作者 Zhe Fang guoyan jiang +1 位作者 Caijun Xu Shuai Wang 《Geodesy and Geodynamics》 2020年第1期31-39,共9页
To overcome the high cost of learning,non-visual operation,and cumbersome steps of fine-tuning map elements in Generic Mapping Tools(GMT)and other geoscience mapping softwares,we present the Tectonic Geodesy Applicati... To overcome the high cost of learning,non-visual operation,and cumbersome steps of fine-tuning map elements in Generic Mapping Tools(GMT)and other geoscience mapping softwares,we present the Tectonic Geodesy Application(TGA),a user-friendly 64-bit tectonic geodesy mapping software based on the secondary development interface of the open source geographic information system QGIS.In this paper,we detailly introduce the architecture and function modules of our software,and highlight the functions of rendering and map decoration through four cases:the geologic map of Papua New Guinea,the seismicity in China and surrounding regions,the seismicity and crustal deformation of the Tibetan Plateau and the coseismic deformation of the 2017 Jiuzhaigou earthquake in China.Compared with GMT,the tectonic geodesy mapping software we developed has the advantages of simple operation,low learning cost and user-friendly interface. 展开更多
关键词 QGIS TECTONIC GEODESY INTERACTIVE MAPPING SYSTEM
下载PDF
Theoretical analysis of ground displacements induced by deep fluid injection based on fully-coupled poroelastic simulation
2
作者 guoyan jiang 《Geodesy and Geodynamics》 CSCD 2021年第3期197-210,共14页
Observations of surface displacements are expected to aid in geomechanical analyses of injectioninduced seismicity.However,the controlling factors of the displacement magnitude remain poorly understood except the elas... Observations of surface displacements are expected to aid in geomechanical analyses of injectioninduced seismicity.However,the controlling factors of the displacement magnitude remain poorly understood except the elastic modulus of the fluid-bearing reservoir.Here,an experiment scheme of numerical simulation based on fully-coupled poroelasticity is designed to investigate the displacements induced by deep underground fluid injection.According to the sealing ability of deep reservoirs,the numerical experiments are classified into two scenarios:injection into open and sealed reservoirs.Potential effects from both geological and operational parameters are considered during the experiments,which include the hydromechanical properties,the reservoir geometry,injection rates and volumes.Experimental results reveal that in addition to the reservoir depth and Young’s modulus,the porosity also has significant influences on the surface displacements.Geodetic modeling of injection-induced displacements should include the parameter of reservoir porosity.When the reservoir is characterized by a good sealing ability,fluid injection is prone to induce larger horizontal displacements than vertical uplifts.Most of injection activities including hydraulic fracturing can probably induce detectable surface displacements.Geodetic surveying,especially using Global Navigation Satellite System(GNSS)with both horizontal and vertical observations,should become an essential monitoring task for anthropogenic fluid injection/production activities,which is conducive to assess and mitigate some geohazards including earthquakes. 展开更多
关键词 Injection-induced deformation Open and sealed reservoirs Geological and operational parameters Poroelastic simulation Geodetic monitoring
下载PDF
A new modeling approach for stress-strain relationship taking into account strain hardening and stored energy by compacted graphite iron evolution
3
作者 Jiahui NIU Chuanzhen HUANG +5 位作者 Zhenyu SHI Hanlian LIU Zhengyi TANG Binghao LI Zhen CHEN guoyan jiang 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第4期195-209,共15页
Compacted graphite iron(CGI)is considered to be an ideal diesel engine material with excellent physical and mechanical properties,which meet the requirements of energy conservation and emission reduction.However,knowl... Compacted graphite iron(CGI)is considered to be an ideal diesel engine material with excellent physical and mechanical properties,which meet the requirements of energy conservation and emission reduction.However,knowledge of the microstructure evolution of CGI and its impact on flow stress remains limited.In this study,a new modeling approach for the stress–strain relationship is proposed by considering the strain hardening effect and stored energy caused by the microstructure evolution of CGI.The effects of strain,strain rate,and deformation temperature on the microstructure of CGI during compression deformation are examined,including the evolution of graphite morphology and the microstructure of the pearlite matrix.The roundness and fractal dimension of graphite particles under different deformation conditions are measured.Combined with finite element simulation models,the influence of graphite particles on the flow stress of CGI is determined.The distributions of grain boundary and geometrically necessary dislocations(GNDs)density in the pearlite matrix of CGI under different strains,strain rates,and deformation temperatures are analyzed by electron backscatter diffraction technology,and the stored energy under each deformation condition is calculated.Results show that the proportion and amount of low-angle grain boundaries and the average GNDs density increase with the increase of strain and strain rate and decreased first and then increased with an increase in deformation temperature.The increase in strain and strain rate and the decrease in deformation temperature contribute to the accumulation of stored energy,which show similar variation trends to those of GNDs density.The parameters in the stress–strain relationship model are solved according to the stored energy under different deformation conditions.The consistency between the predicted results from the proposed stress–strain relationship and the experimental results shows that the evolution of stored energy can accurately predict the stress–strain relationship of CGI. 展开更多
关键词 stress−strain relationship microstructure evolution stored energy strain hardening graphite morphology
原文传递
Numerical simulations of earthquake rupture induced by pressure perturbation
4
作者 Bingquan Ren Caijun Xu +1 位作者 guoyan jiang Lei Yang 《Geodesy and Geodynamics》 EI 2024年第5期477-487,共11页
The subsurface fluid injection can cause pressure increase within faults,leading to earthquake occurrences.However,the factors controlling earthquake rupture due to pressure perturbation remain poorly understood.To re... The subsurface fluid injection can cause pressure increase within faults,leading to earthquake occurrences.However,the factors controlling earthquake rupture due to pressure perturbation remain poorly understood.To resolve this problem,we simulate the physical processes of earthquake nucleation and rupture on strike-slip faults perturbated by pressure migration based on the slip-weakening law.Multiple kinds of factors,including background stress,fluid injection rates,the area of the pressurized region,fault geometry,and fault friction coefficients,are considered in our simulations.Our simulation results reveal that the ratio of shear stress to normal stress rather than their absolute values controls the rupture behavior.With the large stress ratios,high injection rates,and large pressurized areas,earthquakes are prone to propagate as runaway ruptures.Additionally,faults with large aspect ratios of length to width are also favorable for causing runaway ruptures.In contrast,the factors of fault strike,dip angles and friction coefficients have minor influence on rupture behavior. 展开更多
关键词 Induced seismicity Finite element simulation Rupture mode
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部