The concept of Cyber-Physical Systems (CPSs), which combine computation, networking, and physical processes, is considered to be beneficial to smart grid applications. This study presents an integrated simulation en...The concept of Cyber-Physical Systems (CPSs), which combine computation, networking, and physical processes, is considered to be beneficial to smart grid applications. This study presents an integrated simulation environment to provide a unified platform for the investigation of smart grid applications involving power grid monitoring, communication, and control. In contrast to the existing approaches, this environment allows the network simulator to operate independently, importing its results to the power system simulation. This resolves conflicts between discrete event simulation and continuous simulation. In addition, several data compensation methods are proposed and investigated under different network delay conditions. A case study of wide-area monitoring and control is provided, and the efficiency of the proposed simulation framework has been evaluated based on the experimental results.展开更多
基金supported in part by the National Key Basic Research and Development (973) Program of China (Nos. 2013CB228206 and 2011CB302505)the National Natural Science Foundation of China (No. 61233016)2012 State Grid S&T project,Advanced Study of Power Quality-Key Technologies and Applications
文摘The concept of Cyber-Physical Systems (CPSs), which combine computation, networking, and physical processes, is considered to be beneficial to smart grid applications. This study presents an integrated simulation environment to provide a unified platform for the investigation of smart grid applications involving power grid monitoring, communication, and control. In contrast to the existing approaches, this environment allows the network simulator to operate independently, importing its results to the power system simulation. This resolves conflicts between discrete event simulation and continuous simulation. In addition, several data compensation methods are proposed and investigated under different network delay conditions. A case study of wide-area monitoring and control is provided, and the efficiency of the proposed simulation framework has been evaluated based on the experimental results.