期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Unassisted overall water splitting with a solar-to-hydrogen efficiency of over 10% by coupled lead halide perovskite photoelectrodes 被引量:1
1
作者 Ryan Rhee Tae G.Kim +6 位作者 Gyu Y.Jang gwangmin bae Jung H.Lee Sunje Lee Sungsoon Kim Seokwoo Jeon Jong H.Park 《Carbon Energy》 SCIE CAS CSCD 2023年第1期134-143,共10页
Hydrogen is a promising future sustainable fuel candidate with boundless opportunities.Research into photoelectrochemical(PEC)water splitting based on a lead halide perovskite(LHP)has progressed significantly with the... Hydrogen is a promising future sustainable fuel candidate with boundless opportunities.Research into photoelectrochemical(PEC)water splitting based on a lead halide perovskite(LHP)has progressed significantly with the aim of more efficient solar hydrogen production.Herein,we unite a well-known photo-absorbing LHP with cost-effective water-splitting catalysts,and we introduce two types of monolithic LHP-based PEC devices that act as a photocathode and a photoanode for the hydrogen evolution reaction and oxygen evolution reaction,leading to efficient unbiased overall water splitting.Through the integration of these two monolithic LHP-based photoelectrodes,an unbiased solar-to-hydrogen conversion efficiency of 10.64%and a photocurrent density of 8.65 mA cm^(−2) are achieved. 展开更多
关键词 PEROVSKITE photoelectrochemical cell PHOTOELECTRODE unassisted
下载PDF
Fundamental principles and development of proximity-field nanopatterning toward advanced 3D nanofabrication 被引量:1
2
作者 Sang-Hyeon Nam Gayea Hyun +7 位作者 Donghwi Cho Seonggon Han gwangmin bae Haomin Chen Kisun Kim Youngjin Ham Junyong Park Seokwoo Jeon 《Nano Research》 SCIE EI CSCD 2021年第9期2965-2980,共16页
Three-dimensional(3D)nanoarchitectures have offered unprecedented material performances in diverse applications like energy storages,catalysts,electronic,mechanical,and photonic devices.These outstanding performances ... Three-dimensional(3D)nanoarchitectures have offered unprecedented material performances in diverse applications like energy storages,catalysts,electronic,mechanical,and photonic devices.These outstanding performances are attributed to unusual material properties at the nanoscale,enormous surface areas,a geometrical uniqueness,and comparable feature sizes with optical wavelengths.For the practical use of the unusual nanoscale properties,there have been developments for macroscale fabrications of the 3D nanoarchitectures with process areas over centimeter scales.Among the many fabrication methods for 3D structures at the nanoscale,proximity-field nanopatterning(PnP)is one of the promising techniques that generates 3D optical holographic images and transforms them into material structures through a lithographic process.Using conformal and transparent phase masks as a key factor,the PnP process has advantages in terms of stability,uniformity,and reproducibility for 3D nanostructures with periods from 300 nm to several micrometers.Other merits of realizing precise 3D features with sub-100 nm and rapid processes are attributed to the interference of coherent light diffracted by phase masks.In this review,to report the overall progress of PnP from 2003,we present a comprehensive understanding of PnP,including its brief history,the fundamental principles,symmetry control of 3D nanoarchitectures,material issues for the phase masks,and the process area expansion to the wafer-scale for the target applications.Finally,technical challenges and prospects are discussed for further development and practical applications of the PnP technique. 展开更多
关键词 proximity-field nanopatterning three-dimensional(3D)nanostructures phase mask interference lithography
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部