Fall velocity–diameter relationships for four different snowflake types(dendrite,plate,needle,and graupel) were investigated in northeastern South Korea,and a new algorithm for classifying hydrometeors is proposed ...Fall velocity–diameter relationships for four different snowflake types(dendrite,plate,needle,and graupel) were investigated in northeastern South Korea,and a new algorithm for classifying hydrometeors is proposed for distrometric measurements based on the new relationships.Falling ice crystals(approximately 40 000 particles) were measured with a two-dimensional video disdrometer(2DVD) during a winter experiment from 15 January to 9 April 2010.The fall velocity–diameter relationships were derived for the four types of snowflakes based on manual classification by experts using snow photos and 2DVD measurements:the coefficients(exponents) for different snowflake types were 0.82(0.24) for dendrite,0.74(0.35) for plate,1.03(0.71) for needle,and 1.30(0.94) for graupel,respectively.These new relationships established in the present study(PS) were compared with those from two previous studies.Hydrometeor types were classified with the derived fall velocity–diameter relationships,and the classification algorithm was evaluated using 3 × 3 contingency tables for one rain–snow transition event and three snowfall events.The algorithm showed good performance for the transition event:the critical success indices(CSIs) were 0.89,0.61 and 0.71 for snow,wet-snow and rain,respectively.For snow events,the algorithm performance for dendrite and plate(CSIs = 1.0 and 1.0,respectively) was better than for needle and graupel(CSIs = 0.67 and 0.50,respectively).展开更多
Quantitative precipitation estimation (QPE) plays an important role in meteorological and hydrological applications.Ground-based telemetered rain gauges are widely used to collect precipitation measurements.Spatial ...Quantitative precipitation estimation (QPE) plays an important role in meteorological and hydrological applications.Ground-based telemetered rain gauges are widely used to collect precipitation measurements.Spatial interpolation methods are commonly employed to estimate precipitation fields covering non-observed locations.Kriging is a simple and popular geostatistical interpolation method,but it has two known problems:uncertainty underestimation and violation of assumptions.This paper tackles these problems and seeks an optimal spatial interpolation for QPE in order to enhance spatial interpolation through appropriately assessing prediction uncertainty and fulfilling the required assumptions.To this end,several methods are tested:transformation,detrending,multiple spatial correlation functions,and Bayesian kriging.In particular,we focus on a short-term and time-specific rather than a long-term and event-specific analysis.This paper analyzes a stratiform rain event with an embedded convection linked to the passing monsoon front on the 23 August 2012.Data from a total of 100 automatic weather stations are used,and the rainfall intensities are calculated from the difference of 15 minute accumulated rainfall observed every 1 minute.The one-hour average rainfall intensity is then calculated to minimize the measurement random error.Cross-validation is carried out for evaluating the interpolation methods at regional and local levels.As a result,transformation is found to play an important role in improving spatial interpolation and uncertainty assessment,and Bayesian methods generally outperform traditional ones in terms of the criteria.展开更多
A major issue in radar quantitative precipitation estimation is the contamination of radar echoes by non-meteorological targets such as ground clutter,chaff,clear air echoes etc.In this study,a fuzzy logic algorithm f...A major issue in radar quantitative precipitation estimation is the contamination of radar echoes by non-meteorological targets such as ground clutter,chaff,clear air echoes etc.In this study,a fuzzy logic algorithm for the identification of non-meteorological echoes is developed using optimized membership functions and weights for the dual-polarization radar located at Mount Sobaek.For selected precipitation and non-meteorological events,the characteristics of the precipitation and non-meteorological echo are derived by the probability density functions of five fuzzy parameters as functions of reflectivity values.The membership functions and weights are then determined by these density functions.Finally,the nonmeteorological echoes are identified by combining the membership functions and weights.The performance is qualitatively evaluated by long-term rain accumulation.The detection accuracy of the fuzzy logic algorithm is calculated using the probability of detection(POD),false alarm rate(FAR),and clutter–signal ratio(CSR).In addition,the issues in using filtered dual-polarization data are alleviated.展开更多
Tuned Mass Damper (TMD) was applied to an offshore structure to control ocean wave-induced vibration, In the analysis of the dynamic response of the offshore structure, fluid-structure interaction is considered and ...Tuned Mass Damper (TMD) was applied to an offshore structure to control ocean wave-induced vibration, In the analysis of the dynamic response of the offshore structure, fluid-structure interaction is considered and the errors, which occur in the linearization of the interaction, are investigated. For the investigation of the performance of TMD in controlling the vibration, both regular waves with different periods and irregular waves with different significant wave heights are used. Based on the numerical analysis it is concluded that the fluid-structure interaction should be considered in the evaluation of the capability of TMD in vibration control of offshore structures.展开更多
基金funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA2015-1010
文摘Fall velocity–diameter relationships for four different snowflake types(dendrite,plate,needle,and graupel) were investigated in northeastern South Korea,and a new algorithm for classifying hydrometeors is proposed for distrometric measurements based on the new relationships.Falling ice crystals(approximately 40 000 particles) were measured with a two-dimensional video disdrometer(2DVD) during a winter experiment from 15 January to 9 April 2010.The fall velocity–diameter relationships were derived for the four types of snowflakes based on manual classification by experts using snow photos and 2DVD measurements:the coefficients(exponents) for different snowflake types were 0.82(0.24) for dendrite,0.74(0.35) for plate,1.03(0.71) for needle,and 1.30(0.94) for graupel,respectively.These new relationships established in the present study(PS) were compared with those from two previous studies.Hydrometeor types were classified with the derived fall velocity–diameter relationships,and the classification algorithm was evaluated using 3 × 3 contingency tables for one rain–snow transition event and three snowfall events.The algorithm showed good performance for the transition event:the critical success indices(CSIs) were 0.89,0.61 and 0.71 for snow,wet-snow and rain,respectively.For snow events,the algorithm performance for dendrite and plate(CSIs = 1.0 and 1.0,respectively) was better than for needle and graupel(CSIs = 0.67 and 0.50,respectively).
基金funded by the Korea Meteorological Administration Research and Development Program (Grant No. CATER 2013-2040)supported by the Brain Pool program of the Korean Federation of Science and Technology Societies (KOFST) (Grant No. 122S-1-3-0422)
文摘Quantitative precipitation estimation (QPE) plays an important role in meteorological and hydrological applications.Ground-based telemetered rain gauges are widely used to collect precipitation measurements.Spatial interpolation methods are commonly employed to estimate precipitation fields covering non-observed locations.Kriging is a simple and popular geostatistical interpolation method,but it has two known problems:uncertainty underestimation and violation of assumptions.This paper tackles these problems and seeks an optimal spatial interpolation for QPE in order to enhance spatial interpolation through appropriately assessing prediction uncertainty and fulfilling the required assumptions.To this end,several methods are tested:transformation,detrending,multiple spatial correlation functions,and Bayesian kriging.In particular,we focus on a short-term and time-specific rather than a long-term and event-specific analysis.This paper analyzes a stratiform rain event with an embedded convection linked to the passing monsoon front on the 23 August 2012.Data from a total of 100 automatic weather stations are used,and the rainfall intensities are calculated from the difference of 15 minute accumulated rainfall observed every 1 minute.The one-hour average rainfall intensity is then calculated to minimize the measurement random error.Cross-validation is carried out for evaluating the interpolation methods at regional and local levels.As a result,transformation is found to play an important role in improving spatial interpolation and uncertainty assessment,and Bayesian methods generally outperform traditional ones in terms of the criteria.
基金supported by a grant(14AWMP-B079364-01) from Water Management Research Program funded by Ministry of Land,Infrastructure and Transport of Korean government
文摘A major issue in radar quantitative precipitation estimation is the contamination of radar echoes by non-meteorological targets such as ground clutter,chaff,clear air echoes etc.In this study,a fuzzy logic algorithm for the identification of non-meteorological echoes is developed using optimized membership functions and weights for the dual-polarization radar located at Mount Sobaek.For selected precipitation and non-meteorological events,the characteristics of the precipitation and non-meteorological echo are derived by the probability density functions of five fuzzy parameters as functions of reflectivity values.The membership functions and weights are then determined by these density functions.Finally,the nonmeteorological echoes are identified by combining the membership functions and weights.The performance is qualitatively evaluated by long-term rain accumulation.The detection accuracy of the fuzzy logic algorithm is calculated using the probability of detection(POD),false alarm rate(FAR),and clutter–signal ratio(CSR).In addition,the issues in using filtered dual-polarization data are alleviated.
文摘Tuned Mass Damper (TMD) was applied to an offshore structure to control ocean wave-induced vibration, In the analysis of the dynamic response of the offshore structure, fluid-structure interaction is considered and the errors, which occur in the linearization of the interaction, are investigated. For the investigation of the performance of TMD in controlling the vibration, both regular waves with different periods and irregular waves with different significant wave heights are used. Based on the numerical analysis it is concluded that the fluid-structure interaction should be considered in the evaluation of the capability of TMD in vibration control of offshore structures.