The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongch...The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is ob- served along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward toot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.展开更多
This paper presents a case study of mesoscale convective band (MCB) development along a quasi-stationary front over the Seout metropolitan area.The MCB,which initiated on 1500 UTC 20 September 2010 and ended on 1400...This paper presents a case study of mesoscale convective band (MCB) development along a quasi-stationary front over the Seout metropolitan area.The MCB,which initiated on 1500 UTC 20 September 2010 and ended on 1400 UTC 21 September 2010,produced a total precipitation amount of 259.5 mm.The MCB development occurred during a period of tropopause folding in the upper level and moisture advection with a low-level jet.The analyses show that the evolution of the MCB can be classified into five periods:(1) the cell-forming period,when convection initiated; (2) the frontogenetic period,when the stationary front formed over the Korean peninsula; (3) the quasi-stationary period,when the convective band remained over Seoul for 3 h; (4) the mature period,when the cloud cover was largest and the precipitation rate was greater than 90 mm h-1; and (5) the dissipating period,when the MCB diminished and disappeared.The synoptic,thermodynamic,and dynamic analyses show that the MCB maintained its longevity by a tilted updraft,which headed towards a positive PV anomaly.Precipitation was concentrated under this area,where a tilted ascending southwesterly converged with a tilted ascending northeasterly,at the axis of cyclonic rotation.The formation of the convective cell was attributed in part by tropopause folding,which enhanced the cyclonic vorticity at the surface,and by the low-level convergence of warm moist air and upperlevel divergence.The southwesterly flow ascended in a region with high moisture content and strong relative vorticity that maintained the development of an MCB along the quasi-stationary front.展开更多
Statistical downscaling is based on the fact that the large-scale climatic state and regional/local physiographic features control the regional climate. In the present paper, a stochastic weather generator is applied ...Statistical downscaling is based on the fact that the large-scale climatic state and regional/local physiographic features control the regional climate. In the present paper, a stochastic weather generator is applied to seasonal precipitation and temperature forecasts produced by the International Research Institute for Climate and Society (IRI). In conjunction with the GLM (generalized linear modeling) weather generator, a resampling scheme is used to translate the uncertainty in the seasonal forecasts (the IRI format only specifies probabilities for three categories: below normal, near normal, and above normal) into the corresponding uncertainty for the daily weather statistics. The method is able to generate potentially useful shifts in the probability distributions of seasonally aggregated precipitation and minimum and maximum temperature, as well as more meaningful daily weather statistics for crop yields, such as the number of dry days and the amount of precipitation on wet days. The approach is extended to the case of climate change scenarios, treating a hypothetical return to a previously observed drier regime in the Pampas.展开更多
Erratum to:Lee,Y.-H.,G.Lee,S.Joo,and K.-D.Ahn,2018:Observational study of surface wind along a sloping surface over mountainous terrain during winter.Adv.Atmos.Sci.,35(3),276−284,https://doi.org/10.1007/s00376-017-707...Erratum to:Lee,Y.-H.,G.Lee,S.Joo,and K.-D.Ahn,2018:Observational study of surface wind along a sloping surface over mountainous terrain during winter.Adv.Atmos.Sci.,35(3),276−284,https://doi.org/10.1007/s00376-017-7075-5.展开更多
基金supported by Research and Development for KMA Weather, Climate, and Earth System Services (Grant No. NIMS-2016-3100)
文摘The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is ob- served along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward toot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.
基金funded by the Korea Meteorological Administration Research and Development Program under grant CATER 2012-2072
文摘This paper presents a case study of mesoscale convective band (MCB) development along a quasi-stationary front over the Seout metropolitan area.The MCB,which initiated on 1500 UTC 20 September 2010 and ended on 1400 UTC 21 September 2010,produced a total precipitation amount of 259.5 mm.The MCB development occurred during a period of tropopause folding in the upper level and moisture advection with a low-level jet.The analyses show that the evolution of the MCB can be classified into five periods:(1) the cell-forming period,when convection initiated; (2) the frontogenetic period,when the stationary front formed over the Korean peninsula; (3) the quasi-stationary period,when the convective band remained over Seoul for 3 h; (4) the mature period,when the cloud cover was largest and the precipitation rate was greater than 90 mm h-1; and (5) the dissipating period,when the MCB diminished and disappeared.The synoptic,thermodynamic,and dynamic analyses show that the MCB maintained its longevity by a tilted updraft,which headed towards a positive PV anomaly.Precipitation was concentrated under this area,where a tilted ascending southwesterly converged with a tilted ascending northeasterly,at the axis of cyclonic rotation.The formation of the convective cell was attributed in part by tropopause folding,which enhanced the cyclonic vorticity at the surface,and by the low-level convergence of warm moist air and upperlevel divergence.The southwesterly flow ascended in a region with high moisture content and strong relative vorticity that maintained the development of an MCB along the quasi-stationary front.
基金supported by Korea Institute of Civil Engineering and Building Technology (Project name: 2015 Development of a micro raingauge using electromagnetic wave)
文摘Statistical downscaling is based on the fact that the large-scale climatic state and regional/local physiographic features control the regional climate. In the present paper, a stochastic weather generator is applied to seasonal precipitation and temperature forecasts produced by the International Research Institute for Climate and Society (IRI). In conjunction with the GLM (generalized linear modeling) weather generator, a resampling scheme is used to translate the uncertainty in the seasonal forecasts (the IRI format only specifies probabilities for three categories: below normal, near normal, and above normal) into the corresponding uncertainty for the daily weather statistics. The method is able to generate potentially useful shifts in the probability distributions of seasonally aggregated precipitation and minimum and maximum temperature, as well as more meaningful daily weather statistics for crop yields, such as the number of dry days and the amount of precipitation on wet days. The approach is extended to the case of climate change scenarios, treating a hypothetical return to a previously observed drier regime in the Pampas.
文摘Erratum to:Lee,Y.-H.,G.Lee,S.Joo,and K.-D.Ahn,2018:Observational study of surface wind along a sloping surface over mountainous terrain during winter.Adv.Atmos.Sci.,35(3),276−284,https://doi.org/10.1007/s00376-017-7075-5.