期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Optimally arranged TiO_(2)@MoS_(2) heterostructures with effectively induced built-in electric field for high-performance lithium-sulfur batteries 被引量:1
1
作者 Jeongyoub Lee Changhoon Choi +12 位作者 Jung Been Park Seungho Yu Jinho Ha Hyungsoo Lee gyumin jang Young Sun Park Juwon Yun Hayoung Im Subin Moon Soobin Lee Jung-Il Choi Dong-Wan Kim Jooho Moon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期496-508,I0012,共14页
To overcome the serious technological issues affecting lithium-sulfur(Li-S) batteries,such as sluggish sulfur redox kinetics and the detrimental shuttle effect,heterostructure engineering has been investigated as a st... To overcome the serious technological issues affecting lithium-sulfur(Li-S) batteries,such as sluggish sulfur redox kinetics and the detrimental shuttle effect,heterostructure engineering has been investigated as a strategy to effectively capture soluble lithium polysulfide intermediates and promote their conversion reaction by integrating highly polar metal oxides with catalytically active metals sulfides.However,to fully exploit the outstanding properties of heterostructure-based composites,their detailed structure and interfacial contacts should be designed rationally.Herein,optimally arranged TiO_(2)and MoS_(2)-based heterostructures(TiO_(2)@MoS_(2)) are fabricated on carbon cloth as a multifunctional interlayer to efficiently trap polysulfide intermediates and accelerate their redox kinetics.Owing to the synergistic effects between TiO_(2)and MoS_(2)and the uniform heterointerface distribution that induces the ideally oriented built-in electric field,Li-S batteries with TiO_(2)@MoS_(2)interlayers exhibit high rate capability(601 mA h g^(-1)at 5 C),good cycling stability(capacity-fade rate of 0.067% per cycle over 500 cycles at2 C),and satisfactory areal capacity(5.2 mA h cm^(-2)) under an increased sulfur loading of 5.2 mg cm^(-2).Moreover,by comparing with a MoS_(2)@TiO_(2)interlayer composed of reversely arranged heterostructures,the effect of the built-in electric field’s direction on the electrocatalytic reactions of polysulfide intermediates is thoroughly investigated for the first time.The superior electrocatalytic activities of the rationally arranged TiO_(2)@MoS_(2)interlayer demonstrate the importance of optimizing the built-in electric field of heterostructures for producing high-performance Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries Shuttle effect TiO_(2)-MoS_(2)heterostructure engineering Built-in electric field Multifunctional interlayers
下载PDF
Efficient solar fuel production enabled by an iodide oxidation reaction on atomic layer deposited MoS_(2)
2
作者 Young Sun Park gyumin jang +12 位作者 Inkyu Sohn Hyungsoo Lee Jeiwan Tan Juwon Yun Sunihl Ma Jeongyoub Lee Chan Uk Lee Subin Moon Hayoung Im Seung-Min Chung Seungho Yu Hyungjun Kim Jooho Moon 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期200-214,共15页
Oxygen evolution reaction(OER)as a half-anodic reaction of water splitting hinders the overall reaction efficiency owing to its thermodynamic and kinetic limitations.Iodide oxidation reaction(IOR)with low thermodynami... Oxygen evolution reaction(OER)as a half-anodic reaction of water splitting hinders the overall reaction efficiency owing to its thermodynamic and kinetic limitations.Iodide oxidation reaction(IOR)with low thermodynamic barrier and rapid reaction kinetics is a promising alternative to the OER.Herein,we present a molybdenum disulfide(MoS_(2))electrocatalyst for a high-efficiency and remarkably durable anode enabling IOR.MoS_(2)nanosheets deposited on a porous carbon paper via atomic layer deposition show an IOR current density of 10 mA cm^(–2)at an anodic potential of 0.63 V with respect to the reversible hydrogen electrode owing to the porous substrate as well as the intrinsic iodide oxidation capability of MoS_(2)as confirmed by theoretical calculations.The lower positive potential applied to the MoS_(2)-based heterostructure during IOR electrocatalysis prevents deterioration of the active sites on MoS_(2),resulting in exceptional durability of 200 h.Subsequently,we fabricate a two-electrode system comprising a MoS_(2)anode for IOR combined with a commercial Pt@C catalyst cathode for hydrogen evolution reaction.Moreover,the photovoltaic–electrochemical hydrogen production device comprising this electrolyzer and a single perovskite photovoltaic cell shows a record-high current density of 21 mA cm^(–2)at 1 sun under unbiased conditions. 展开更多
关键词 iodide oxidation reaction molybdenum sulfide photovoltaic-electrochemical hydrogen production solar hydrogen
下载PDF
Rapid crystallization-driven high-efficiency phase-pure deep-blue Ruddlesden–Popper perovskite light-emitting diodes 被引量:4
3
作者 gyumin jang Hyowon Han +8 位作者 Sunihl Ma Junwoo Lee Chan Uk Lee Wooyong Jeong Jaehyun Son Dongki Cho Ji-Hee Kim Cheolmin Park Jooho Moon 《Advanced Photonics》 SCIE EI CAS CSCD 2023年第1期8-18,共11页
Perovskite light-emitting diodes(PeLEDs)are considered as promising candidates for nextgeneration solution-processed full-color displays.However,the external quantum efficiencies(EQEs)and operational stabilities of de... Perovskite light-emitting diodes(PeLEDs)are considered as promising candidates for nextgeneration solution-processed full-color displays.However,the external quantum efficiencies(EQEs)and operational stabilities of deep-blue(<460 nm)PeLEDs still lag far behind their red and green counterparts.Herein,a rapid crystallization method based on hot-antisolvent bathing is proposed for realization of deep-blue PeLEDs.By promoting immediate removal of the precursor solvent from the wet perovskite films,development of the quasi-two-dimensional(2D)Ruddlesden–Popper perovskite(2D-RPP)crystals with n values>3 is hampered completely,so that phase-pure 2D-RPP films with bandgaps suitable for deep-blue PeLEDs can be obtained successfully.The uniquely developed rapid crystallization method also enables formation of randomly oriented 2D-RPP crystals,thereby improving the transfer and transport kinetics of the charge carriers.Thus,high-performance deep-blue PeLEDs emitting at 437 nm with a peak EQE of 0.63%are successfully demonstrated.The color coordinates are confirmed to be(0.165,0.044),which match well with the Rec.2020 standard blue gamut and have excellent spectral stability. 展开更多
关键词 Ruddlesden–Popper perovskite rapid crystallization deep-blue light-emitting diodes phase purity randomly oriented crystals
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部