A new two-dimensional atomic crystal, monolayer cuprous telluride(Cu2Te) has been fabricated on a grapheneSi C(0001) substrate by molecular beam epitaxy(MBE). The low-energy electron diffraction(LEED) characte...A new two-dimensional atomic crystal, monolayer cuprous telluride(Cu2Te) has been fabricated on a grapheneSi C(0001) substrate by molecular beam epitaxy(MBE). The low-energy electron diffraction(LEED) characterization shows that the monolayer Cu2Te forms ■ superstructure with respect to the graphene substrate. The atomic structure of the monolayer Cu2Te is investigated through a combination of scanning tunneling microscopy(STM) experiments and density functional theory(DFT) calculations. The stoichiometry of the Cu2Te sample is verified by x-ray photoelectron spectroscopy(XPS) measurement. The angle-resolved photoemission spectroscopy(ARPES) data present the electronic band structure of the sample, which is in good agreement with the calculated results. Furthermore, air-exposure experiments reveal the chemical stability of the monolayer Cu2Te. The fabrication of this new 2D material with a particular structure may bring new physical properties for future applications.展开更多
The vortex pinning determining the current carrying capacity of a superconductor is an important property to the applications of superconducting materials.For layered superconductors,the vortex pinning can be enhanced...The vortex pinning determining the current carrying capacity of a superconductor is an important property to the applications of superconducting materials.For layered superconductors,the vortex pinning can be enhanced by a strong interlayer interaction in accompany with a suppression of superconducting anisotropy,which remains to be investigated in iron based superconductors(FeSCs)with the layered structure.Here,based on the transport and magnetic torque measurements,we experimentally investigate the vortex pinning in two bilayer FeSCs,CaKFe_(4)As_(4)(Fe1144)and KCa_(2)Fe_(4)As4F_(2)(Fe12442),and compare their superconducting anisotropyγ.While the anisotropyγ≈3 for Fe1144 is much smaller thanγ≈15 in Fe12442 around Tc,a higher flux pinning energy as evidenced by a higher critical current density is found in Fe1144,as compared with the case of Fe12442.In combination with the literature data of Ba_(0.72)K_(0.28)Fe2As_(2) and Nd Fe As_(O0.82)F_(0.18),we reveal an anti-correlation between the pinning energy and the superconducting anisotropy in these Fe SCs.Our results thus suggest that the interlayer interaction can not be neglected when considering the vortex pinning in Fe SCs.展开更多
基金Project supported by the National Key Research&Development Program of China(Grant Nos.2016YFA0202300 and 2018YF A0305800)the National Natural Science Foundation of China(Grant Nos.61888102,11604373,61622116,and 51872284)+2 种基金the CAS Pioneer Hundred Talents Program,China,the Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.XDB30000000 and XDB28000000)Beijing Nova Program,China(Grant No.Z181100006218023)the University of Chinese Academy of Sciences
文摘A new two-dimensional atomic crystal, monolayer cuprous telluride(Cu2Te) has been fabricated on a grapheneSi C(0001) substrate by molecular beam epitaxy(MBE). The low-energy electron diffraction(LEED) characterization shows that the monolayer Cu2Te forms ■ superstructure with respect to the graphene substrate. The atomic structure of the monolayer Cu2Te is investigated through a combination of scanning tunneling microscopy(STM) experiments and density functional theory(DFT) calculations. The stoichiometry of the Cu2Te sample is verified by x-ray photoelectron spectroscopy(XPS) measurement. The angle-resolved photoemission spectroscopy(ARPES) data present the electronic band structure of the sample, which is in good agreement with the calculated results. Furthermore, air-exposure experiments reveal the chemical stability of the monolayer Cu2Te. The fabrication of this new 2D material with a particular structure may bring new physical properties for future applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574338)the National Natural Science Foundation of China–China Academy of Engineering Physics NSAF Joint Fund(Grant No.U1530402)+4 种基金supported by the Superconducting Electronics Facility(SELF)of Shanghai Institute of Microsystem and Information Technology.The work at IOPCAS was supported by the National Key Research and Development Program of China(Grant No.2018YFA0704200)the National Natural Science Foundation of China(Grant Nos.11822411 and 11961160699)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant No.XDB25000000)the Youth Innovation Promotion Association of CAS(Grant No.2016004)。
文摘The vortex pinning determining the current carrying capacity of a superconductor is an important property to the applications of superconducting materials.For layered superconductors,the vortex pinning can be enhanced by a strong interlayer interaction in accompany with a suppression of superconducting anisotropy,which remains to be investigated in iron based superconductors(FeSCs)with the layered structure.Here,based on the transport and magnetic torque measurements,we experimentally investigate the vortex pinning in two bilayer FeSCs,CaKFe_(4)As_(4)(Fe1144)and KCa_(2)Fe_(4)As4F_(2)(Fe12442),and compare their superconducting anisotropyγ.While the anisotropyγ≈3 for Fe1144 is much smaller thanγ≈15 in Fe12442 around Tc,a higher flux pinning energy as evidenced by a higher critical current density is found in Fe1144,as compared with the case of Fe12442.In combination with the literature data of Ba_(0.72)K_(0.28)Fe2As_(2) and Nd Fe As_(O0.82)F_(0.18),we reveal an anti-correlation between the pinning energy and the superconducting anisotropy in these Fe SCs.Our results thus suggest that the interlayer interaction can not be neglected when considering the vortex pinning in Fe SCs.