Electrospinning was used as a novel technique for fabricating polymeric nanofibers of a serum cholesterol lowering and poorly water-soluble plant sterol, β-sitosterol. Chitosan was used as a stabilizer/carrier polyme...Electrospinning was used as a novel technique for fabricating polymeric nanofibers of a serum cholesterol lowering and poorly water-soluble plant sterol, β-sitosterol. Chitosan was used as a stabilizer/carrier polymer. The mean diameters of nanofibers ranged from 150 nm to218 nm. β-sitosterol was in an amorphous form and homogeneously dispersed in the nanofibers. The β-sitosterol-loaded nanofibers were freely water-soluble and exhibited very short lag-time in releasing the plant sterol. The dissolution was associated with an immediate recrystallization of β-sitosterol in submicron level. In conclusion, electrospinning is a promising future technology for the formulation of poorly water-soluble plant sterols.展开更多
Thrombosis and infections are the two major complications associated with extracorporeal circuits and indwelling medical devices,leading to significant mortality in clinic.To address this issue,here,we report a biomim...Thrombosis and infections are the two major complications associated with extracorporeal circuits and indwelling medical devices,leading to significant mortality in clinic.To address this issue,here,we report a biomimetic surface engineering strategy by the integration of mussel-inspired adhesive peptide,with bio-orthogonal click chemistry,to tailor the surface functionalities of tubing and catheters.Inspired by mussel adhesive foot protein,a bioclickable peptide mimic(DOPA)4-azidebased structure is designed and grafted on an aminated tubing robustly based on catechol-amine chemistry.Then,the dibenzylcyclooctyne(DBCO)modified nitric oxide generating species of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid(DOTA)chelated copper ions and the DBCO-modified antimicrobial peptide(DBCO-AMP)are clicked onto the grafted surfaces via bio-orthogonal reaction.The combination of the robustly grafted AMP and Cu-DOTA endows the modified tubing with durable antimicrobial properties and ability in long-term catalytically generating NO from endogenous snitrosothiols to resist adhesion/activation of platelets,thus preventing the formation of thrombosis.Overall,this biomimetic surface engineering technology provides a promising solution for multicomponent surface functionalization and the surface bioengineering of biomedical devices with enhanced clinical performance.展开更多
Immune cells play a crucial regulatory role in inflammatory phase and proliferative phase during skin healing.How to programmatically activate sequential immune responses is the key for scarless skin regeneration.In t...Immune cells play a crucial regulatory role in inflammatory phase and proliferative phase during skin healing.How to programmatically activate sequential immune responses is the key for scarless skin regeneration.In this study,an“Inner-Outer”IL-10-loaded electrospun fiber with cascade release behavior was constructed.During the inflammatory phase,the electrospun fiber released a lower concentration of IL-10 within the wound,inhibiting excessive recruitment of inflammatory cells and polarizing macrophages into anti-inflammatory phenotype“M2c”to suppress excessive inflammation response.During the proliferative phase,a higher concentration of IL-10 released by the fiber and the anti-fibrotic cytokines secreted by polarized“M2c”directly acted on dermal fibroblasts to simultaneously inhibit extracellular matrix overdeposition and promote fibroblast migration.The“Inner-Outer”IL-10-loaded electrospun fiber programmatically activated the sequential immune responses during wound healing and led to scarless skin regeneration,which is a promising immunomodulatory biomaterial with great potential for promoting complete tissue regeneration.展开更多
基金This study is supported by the European Social Fund’s Doctoral Studies and Internationalisation Programme DoRa.The work is part of the ETF Grant Project No.ETF7980 and IUT-34-18 Project.Kerly Kustavus is kindly acknowledged for drawing the chemical structures of plant sterols.Dr.Korbinian Löbmann is kindly acknowledged for providing the Mercury files for the theoretical XRPD pattern calculations.Dr.H.A.Santos acknowledges financial support from the Academy of Finland(Decision No.252215).
文摘Electrospinning was used as a novel technique for fabricating polymeric nanofibers of a serum cholesterol lowering and poorly water-soluble plant sterol, β-sitosterol. Chitosan was used as a stabilizer/carrier polymer. The mean diameters of nanofibers ranged from 150 nm to218 nm. β-sitosterol was in an amorphous form and homogeneously dispersed in the nanofibers. The β-sitosterol-loaded nanofibers were freely water-soluble and exhibited very short lag-time in releasing the plant sterol. The dissolution was associated with an immediate recrystallization of β-sitosterol in submicron level. In conclusion, electrospinning is a promising future technology for the formulation of poorly water-soluble plant sterols.
基金the National Natural Science Foundation of China(Project 82072072)(Z.Y)International Cooperation Project by Science and Technology Department of Sichuan Province(2021YFH0056 and 2019YFH0103)(Z.Y)the Fundamental Research Funds for the Central Universities(2682020ZT82 and 2682020ZT76)(Z.Y).
文摘Thrombosis and infections are the two major complications associated with extracorporeal circuits and indwelling medical devices,leading to significant mortality in clinic.To address this issue,here,we report a biomimetic surface engineering strategy by the integration of mussel-inspired adhesive peptide,with bio-orthogonal click chemistry,to tailor the surface functionalities of tubing and catheters.Inspired by mussel adhesive foot protein,a bioclickable peptide mimic(DOPA)4-azidebased structure is designed and grafted on an aminated tubing robustly based on catechol-amine chemistry.Then,the dibenzylcyclooctyne(DBCO)modified nitric oxide generating species of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid(DOTA)chelated copper ions and the DBCO-modified antimicrobial peptide(DBCO-AMP)are clicked onto the grafted surfaces via bio-orthogonal reaction.The combination of the robustly grafted AMP and Cu-DOTA endows the modified tubing with durable antimicrobial properties and ability in long-term catalytically generating NO from endogenous snitrosothiols to resist adhesion/activation of platelets,thus preventing the formation of thrombosis.Overall,this biomimetic surface engineering technology provides a promising solution for multicomponent surface functionalization and the surface bioengineering of biomedical devices with enhanced clinical performance.
基金This work was supported by the National Key Research and Development Program of China(2020YFA0908200)National Natural Science Foundation of China(81701907 and 81871472)+7 种基金The in vitro biological experiment was supported by National Natural Science Foundation of China(81772099 and 81801928)Shanghai Sailing Program(18YF1412400)The production and detection of the scaffold were supported by Shanghai Jiao Tong University“Medical and Research”Program(ZH2018ZDA04)Science and Technology Commission of Shanghai Municipality(19440760400)The in vivo biological experiment were supported Pujiang program of SSTC(18PJ1407100)Prof.H.Zhang acknowledges the financial support from Academy of Finland(328933)Sigrid Juselius Foundation(28001830K1)Prof.H.A.Santos acknowledges the financial support from HiLIFE Research Funds and Sigrid Juselius Foundation.
文摘Immune cells play a crucial regulatory role in inflammatory phase and proliferative phase during skin healing.How to programmatically activate sequential immune responses is the key for scarless skin regeneration.In this study,an“Inner-Outer”IL-10-loaded electrospun fiber with cascade release behavior was constructed.During the inflammatory phase,the electrospun fiber released a lower concentration of IL-10 within the wound,inhibiting excessive recruitment of inflammatory cells and polarizing macrophages into anti-inflammatory phenotype“M2c”to suppress excessive inflammation response.During the proliferative phase,a higher concentration of IL-10 released by the fiber and the anti-fibrotic cytokines secreted by polarized“M2c”directly acted on dermal fibroblasts to simultaneously inhibit extracellular matrix overdeposition and promote fibroblast migration.The“Inner-Outer”IL-10-loaded electrospun fiber programmatically activated the sequential immune responses during wound healing and led to scarless skin regeneration,which is a promising immunomodulatory biomaterial with great potential for promoting complete tissue regeneration.