We report the effect of ruthenium dye on negative capacitance of nanocrystalline titanium dioxide/poly(3-hexyl thiophene), nc-TiO2/P3HT, heterojunction solar cells. It has been found that the low frequency capacitance...We report the effect of ruthenium dye on negative capacitance of nanocrystalline titanium dioxide/poly(3-hexyl thiophene), nc-TiO2/P3HT, heterojunction solar cells. It has been found that the low frequency capacitance reaches a high positive value and then drop to the negative region. In P3HT/Ru-Dye/nc-TiO2 solar cells, the negative capacitance is observed under very low forward bias condition unlike the negative capacitance in P3HT/ncTiO2 solar cells. That is attributed to the difference of the concentration of dipole and presence of depletion region at interface between the P3HT and nc-TiO2.展开更多
文摘We report the effect of ruthenium dye on negative capacitance of nanocrystalline titanium dioxide/poly(3-hexyl thiophene), nc-TiO2/P3HT, heterojunction solar cells. It has been found that the low frequency capacitance reaches a high positive value and then drop to the negative region. In P3HT/Ru-Dye/nc-TiO2 solar cells, the negative capacitance is observed under very low forward bias condition unlike the negative capacitance in P3HT/ncTiO2 solar cells. That is attributed to the difference of the concentration of dipole and presence of depletion region at interface between the P3HT and nc-TiO2.