Chaotic mixing of distinct fluids produces a convoluted structure to the interface separating these fluids. For miscible fluids (as considered here), this interface is defined as a 50% mass concentration isosurface....Chaotic mixing of distinct fluids produces a convoluted structure to the interface separating these fluids. For miscible fluids (as considered here), this interface is defined as a 50% mass concentration isosurface. For shock wave induced (Richtmyer-Meshkov) instabilities, we find the interface to be increasingly complex as the computational mesh is refined. This interfacial chaos is cut off by viscosity, or by the computational mesh if the Kolmogorov scale is small relative to the mesh. In a regime of converged interface statistics, we then examine mixing, i.e. concentration statistics, regularized by mass diffusion. For Schmidt numbers significantly larger than unity, typical of a liquid or dense plasma, additional mesh refinement is normally needed to overcome numerical mass diffusion and to achieve a converged solution of the mixing problem. However, with the benefit of front tracking and with an algorithm that allows limited interface diffusion, we can assure convergence uniformly in the Schmidt number. We show that different solutions result from variation of the Schmidt number. We propose subgrid viscosity and mass diffusion parameterizations which might allow converged solutions at realistic grid levels.展开更多
基金U.S.Department of Energy grants DE-AC02-98CH10886 and DE-FG5206NA26208the Army Research Office grant W911NF0510413.
文摘Chaotic mixing of distinct fluids produces a convoluted structure to the interface separating these fluids. For miscible fluids (as considered here), this interface is defined as a 50% mass concentration isosurface. For shock wave induced (Richtmyer-Meshkov) instabilities, we find the interface to be increasingly complex as the computational mesh is refined. This interfacial chaos is cut off by viscosity, or by the computational mesh if the Kolmogorov scale is small relative to the mesh. In a regime of converged interface statistics, we then examine mixing, i.e. concentration statistics, regularized by mass diffusion. For Schmidt numbers significantly larger than unity, typical of a liquid or dense plasma, additional mesh refinement is normally needed to overcome numerical mass diffusion and to achieve a converged solution of the mixing problem. However, with the benefit of front tracking and with an algorithm that allows limited interface diffusion, we can assure convergence uniformly in the Schmidt number. We show that different solutions result from variation of the Schmidt number. We propose subgrid viscosity and mass diffusion parameterizations which might allow converged solutions at realistic grid levels.