In this study, the principal objective is to compare the performances of an air<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">cooled one cylinder, f...In this study, the principal objective is to compare the performances of an air<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">cooled one cylinder, four</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">stroke direct injection diesel engine using the blends (5% by volume B5, 10% by volume B10) of diesel and biodiesels derived respectively from palm oil, castor oil and raphia sese De Wild oil with pure diesel. All the biodiesels used in this work come from the plant species of the democratic republic of Congo as listed above. The engine performances (power, torque and brake specific consumption)</span><span> </span><span style="font-family:Verdana;">at different engine speeds were determined at both full and partial loads. According to experimental results, the increments in the power output and torque when the mixtures of diesel and biodiesels were used</span><span style="font-family:Verdana;"> and</span><span> </span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> observed. </span><span style="font-family:Verdana;">On</span><span style="font-family:Verdana;"> the other side, the specific fuel consumption of the mixtures is higher than that of pure diesel</span><span> </span><span style="font-family:Verdana;">although the calculated lower heating values </span><span style="font-family:Verdana;">are almost within the same range</span><span style="font-family:Verdana;"> for the all studied fuels. Finally, in partial load 1/1, pure diesel blended with biodiesels B5 derived from castor oil presented high specific brake consumption values compared to the other fuels while B10 from the same oil presents low brake specific consumption values for power greater than 3</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;">2 kW.</span>展开更多
文摘In this study, the principal objective is to compare the performances of an air<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">cooled one cylinder, four</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">stroke direct injection diesel engine using the blends (5% by volume B5, 10% by volume B10) of diesel and biodiesels derived respectively from palm oil, castor oil and raphia sese De Wild oil with pure diesel. All the biodiesels used in this work come from the plant species of the democratic republic of Congo as listed above. The engine performances (power, torque and brake specific consumption)</span><span> </span><span style="font-family:Verdana;">at different engine speeds were determined at both full and partial loads. According to experimental results, the increments in the power output and torque when the mixtures of diesel and biodiesels were used</span><span style="font-family:Verdana;"> and</span><span> </span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> observed. </span><span style="font-family:Verdana;">On</span><span style="font-family:Verdana;"> the other side, the specific fuel consumption of the mixtures is higher than that of pure diesel</span><span> </span><span style="font-family:Verdana;">although the calculated lower heating values </span><span style="font-family:Verdana;">are almost within the same range</span><span style="font-family:Verdana;"> for the all studied fuels. Finally, in partial load 1/1, pure diesel blended with biodiesels B5 derived from castor oil presented high specific brake consumption values compared to the other fuels while B10 from the same oil presents low brake specific consumption values for power greater than 3</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;">2 kW.</span>