期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Strengthening in gradient TiAl alloys
1
作者 P.Li Y.Chen +6 位作者 X.Liu X.H.Wang F.R.Chen Z.X.Qi G.Zheng h.g.xiang G.Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第35期98-105,共8页
Gradient structure is emerging as an effective strategy to fabricate metals with remarkable mechanical performance,but have not been verified in intermetallic compounds for high-temperature applications.Through experi... Gradient structure is emerging as an effective strategy to fabricate metals with remarkable mechanical performance,but have not been verified in intermetallic compounds for high-temperature applications.Through experiments and atomic simulations,we show that a typical intermetallic TiAl alloy with gra-dient structure has a significant strengthening effect both at room temperature and high temperatures.The room-temperature compressive strength of TiAl alloys with gradient grain obtained by additive man-ufacturing is 2.57 GPa,which is∼2.7 times as strong as that with equiaxed grain.The strengthening effect is attributed to more sessile dislocations in gradient structure caused by the intersections of mul-tiple slip systems in gradient grain.More importantly,the strengthening effect is still effective at high temperatures and the compressive strength is 1.28 GPa at 750°C.The simulation results show that this strengthening effect is due to the increased Hirth dislocation at high temperatures.This study expands the applications of TiAl alloys for load-bearing structures and provides a new strategy for improving the strength of intermetallic compounds at both room temperature and high temperatures. 展开更多
关键词 TiAl alloys Strengthening Gradient grain Additive manufacturing Molecular dynamics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部