Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM)...Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation.展开更多
Sludge consisting of heavy element phases and oxides is often generated during the casting operation of aluminum(Al)and magnesium(Mg)alloys.With the help of the well-established Sludge Factor(SF)formula,it is relative...Sludge consisting of heavy element phases and oxides is often generated during the casting operation of aluminum(Al)and magnesium(Mg)alloys.With the help of the well-established Sludge Factor(SF)formula,it is relatively easy to control the sludge generation in aluminum alloys.But formation mechanisms and characteristics of sludge in die casting magnesium alloys are still unclear.To ensure the production of high quality die cast components at a low cost,a full understanding of sludge in die casting Mg alloys and its proper control measures need to be developed,since excessive sludge formation affects deleteriously material and operation cost,and casting performance.In the present report,the formation,characteristics and control of Mg die-casting sludge,based on the established knowledge of sludge formation and sludge factor in Al die casting alloys,are reviewed.Previous work on characterization and assessment of sludge in die cast Mg alloys are reviewed.Metallurgical principles for control of sludge in ingot production in association with die casting of Mg alloys are discussed.Rapid assessment of Mg oxide and intermetallics relevant to sludge formation in Mg alloys are highlighted.展开更多
We examined experimentally the effects of incoming surface wind on the turbine wake and the wake interference among upstream and downstream wind turbines sited in atmospheric boundary layer(ABL) winds. The experimen...We examined experimentally the effects of incoming surface wind on the turbine wake and the wake interference among upstream and downstream wind turbines sited in atmospheric boundary layer(ABL) winds. The experiment was conducted in a large-scale ABL wind tunnel with scaled wind turbine models mounted in different incoming surface winds simulating the ABL winds over typical offshore/onshore wind farms. Power outputs and dynamic loadings acting on the turbine models and the wake flow characteristics behind the turbine models were quantified. The results revealed that the incoming surface winds significantly affect the turbine wake characteristics and wake interference between the upstream and downstream turbines. The velocity deficits in the turbine wakes recover faster in the incoming surface winds with relatively high turbulence levels. Variations of the power outputs and dynamic wind loadings acting on the downstream turbines sited in the wakes of upstream turbines are correlated well with the turbine wakes characteristics. At the same downstream locations, the downstream turbines have higher power outputs and experience greater static and fatigue loadings in the inflow with relatively high turbulence level, suggesting a smaller effect of wake interference for the turbines sited in onshore wind farms.展开更多
Full Navier-Stokes Analyses have been conducted for the flows behind the trailing edge of a lobed forced mixer. The governing equations are derived from the timedependent compressible Navier-Stokes equa tions and disc...Full Navier-Stokes Analyses have been conducted for the flows behind the trailing edge of a lobed forced mixer. The governing equations are derived from the timedependent compressible Navier-Stokes equa tions and discretized in the finite-difference form. A simple two-layer eddy viscosity model has also been used to account for the turbulence. Computed results are compared with some of the velocity measurements using a laserDoppler anemometer (Yu and Yip (1997)). In general, good agreement can be obtained in the streamwise mean velocity distribution but the decay of the streamwise circulation is underpredicted. Some suggestions to the discrepancy are proposed.展开更多
基金Meridian Lightweight Technologies Inc.,Strathroy,Ontario Canadathe University of Windsor,Windsor,Ontario,Canada for supporting this workpart of a large project funded by Meridian Lightweight Technologies,Inc.
文摘Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation.
基金the Meridian Lightweight Technologies Inc., Strathroy, Ontario Canadathe University of Windsor, Windsor, Ontario, Canada for supporting this workpart of a large project funded by Meridian Lightweight Technologies, Inc.
文摘Sludge consisting of heavy element phases and oxides is often generated during the casting operation of aluminum(Al)and magnesium(Mg)alloys.With the help of the well-established Sludge Factor(SF)formula,it is relatively easy to control the sludge generation in aluminum alloys.But formation mechanisms and characteristics of sludge in die casting magnesium alloys are still unclear.To ensure the production of high quality die cast components at a low cost,a full understanding of sludge in die casting Mg alloys and its proper control measures need to be developed,since excessive sludge formation affects deleteriously material and operation cost,and casting performance.In the present report,the formation,characteristics and control of Mg die-casting sludge,based on the established knowledge of sludge formation and sludge factor in Al die casting alloys,are reviewed.Previous work on characterization and assessment of sludge in die cast Mg alloys are reviewed.Metallurgical principles for control of sludge in ingot production in association with die casting of Mg alloys are discussed.Rapid assessment of Mg oxide and intermetallics relevant to sludge formation in Mg alloys are highlighted.
基金support from the National Science Foundation (NSF) (Grants CBET-1133751 and CBET-1438099)the support from the National Key Technology Support Program of China (Grant 2015BAA06B04)Shanghai Natural Science Foundation (Grant 16ZR1417600)
文摘We examined experimentally the effects of incoming surface wind on the turbine wake and the wake interference among upstream and downstream wind turbines sited in atmospheric boundary layer(ABL) winds. The experiment was conducted in a large-scale ABL wind tunnel with scaled wind turbine models mounted in different incoming surface winds simulating the ABL winds over typical offshore/onshore wind farms. Power outputs and dynamic loadings acting on the turbine models and the wake flow characteristics behind the turbine models were quantified. The results revealed that the incoming surface winds significantly affect the turbine wake characteristics and wake interference between the upstream and downstream turbines. The velocity deficits in the turbine wakes recover faster in the incoming surface winds with relatively high turbulence levels. Variations of the power outputs and dynamic wind loadings acting on the downstream turbines sited in the wakes of upstream turbines are correlated well with the turbine wakes characteristics. At the same downstream locations, the downstream turbines have higher power outputs and experience greater static and fatigue loadings in the inflow with relatively high turbulence level, suggesting a smaller effect of wake interference for the turbines sited in onshore wind farms.
文摘Full Navier-Stokes Analyses have been conducted for the flows behind the trailing edge of a lobed forced mixer. The governing equations are derived from the timedependent compressible Navier-Stokes equa tions and discretized in the finite-difference form. A simple two-layer eddy viscosity model has also been used to account for the turbulence. Computed results are compared with some of the velocity measurements using a laserDoppler anemometer (Yu and Yip (1997)). In general, good agreement can be obtained in the streamwise mean velocity distribution but the decay of the streamwise circulation is underpredicted. Some suggestions to the discrepancy are proposed.