A multiscalar and nonrenormalizable B-L extension of the standard model(SM)with S_(4)symmetry which successfully explains the recently observed neutrino oscillation data is proposed.The tiny neutrino masses and their ...A multiscalar and nonrenormalizable B-L extension of the standard model(SM)with S_(4)symmetry which successfully explains the recently observed neutrino oscillation data is proposed.The tiny neutrino masses and their hierarchies are generated via the type-I seesaw mechanism.The model reproduces the recent experiments of neutrino mixing angles and Dirac CP violating phase in which the atmospheric angle(θ_(23))and the reactor angle(θ_(13))get the best-fit values while the solar angle(θ_(12))and Dirac CP violating phase(δ)are in 3σrange of the best-fit value for the normal hierarchy(NH).For the inverted hierarchy(IH),θ13 gets the best-ft value andθ_(23)together withδare in the lσrange,whileθ12 is in 3δrange of the best-fit value.The effective neutrino masses are pre-dicted to be(m_(ee))=6.81 meV for the NH and(m_(ee))=48.48 meV for the IH,in good agreement with the most re-cent experimental data.展开更多
基金Vietnam National Foundation for Science and Technology Development(NAFOSTED)(103.01-2017.341)。
文摘A multiscalar and nonrenormalizable B-L extension of the standard model(SM)with S_(4)symmetry which successfully explains the recently observed neutrino oscillation data is proposed.The tiny neutrino masses and their hierarchies are generated via the type-I seesaw mechanism.The model reproduces the recent experiments of neutrino mixing angles and Dirac CP violating phase in which the atmospheric angle(θ_(23))and the reactor angle(θ_(13))get the best-fit values while the solar angle(θ_(12))and Dirac CP violating phase(δ)are in 3σrange of the best-fit value for the normal hierarchy(NH).For the inverted hierarchy(IH),θ13 gets the best-ft value andθ_(23)together withδare in the lσrange,whileθ12 is in 3δrange of the best-fit value.The effective neutrino masses are pre-dicted to be(m_(ee))=6.81 meV for the NH and(m_(ee))=48.48 meV for the IH,in good agreement with the most re-cent experimental data.