Soil erosion is a serious problem arising from agricultural intensification, land degradation and other anthropogenic activities. Assessment of soil erosion is useful in planning and conservation works in a watershed ...Soil erosion is a serious problem arising from agricultural intensification, land degradation and other anthropogenic activities. Assessment of soil erosion is useful in planning and conservation works in a watershed or basin. Modelling can provide a quantitative and consistent approach to estimate soil erosion and sediment yield under a wide range of conditions. In the present study, the soil loss model, Revised Universal Soil Loss Equation (RUSLE) integrated with GIS has been used to estimate soil loss in the Nethravathi Basin located in the southwestern part of India. The Nethravathi Basin is a tropical coastal humid area having a drainage area of 3128 km2 up to the gauging station. The parameters of RUSLE model were estimated using remote sensing data and the erosion probability zones were determined using GIS. The estimated rainfall erosivity, soil erodibility, topographic and crop management factors range from 2948.16 to 4711.4 MJ/mm.ha-1hr-1/year, 0.10 to 0.44 t ha-1 -MJ-1.mm 1, 0 to 92,774 and 0 to 0.63 respectively. The results indicate that the estimated total annual potential soil loss of about 473,339 t/yr is comparable with the measured sediment of 441,870 t/yr during the water year 2002 2003. The predicted soil erosion rate due to increase in agricultural area is about 14,673.5 t/yr. The probability zone map has been derived by the weighted overlay index method indicate that the major portion of the study area comes under low probability zone and only a small portion comes under high and very high probability zone. The results can certainly aid in implementation of soil management and conservation practices to reduce the soil erosion in the Nethravathi Basin.展开更多
Shoreline extraction is fundamental and inevitable for several studies.Ascertaining the precise spatial location of the shoreline is crucial.Recently,the need for using remote sensing data to accomplish the complex ta...Shoreline extraction is fundamental and inevitable for several studies.Ascertaining the precise spatial location of the shoreline is crucial.Recently,the need for using remote sensing data to accomplish the complex task of automatic extraction of features,such as shoreline,has considerably increased.Automated feature extraction can drastically minimize the time and cost of data acquisition and database updating.Effective and fast approaches are essential to monitor coastline retreat and update shoreline maps.Here,we present a flexible mathematical morphology-driven approach for shoreline extraction algorithm from satellite imageries.The salient features of this work are the preservation of actual size and shape of the shorelines,run-time structuring element definition,semi-automation,faster processing,and single band adaptability.The proposed approach is tested with various sensor-driven images with low to high resolutions.Accuracy of the developed methodology has been assessed with manually prepared ground truths of the study area and compared with an existing shoreline classification approach.The proposed approach is found successful in shoreline extraction from the wide variety of satellite images based on the results drawn from visual and quantitative assessments.展开更多
文摘Soil erosion is a serious problem arising from agricultural intensification, land degradation and other anthropogenic activities. Assessment of soil erosion is useful in planning and conservation works in a watershed or basin. Modelling can provide a quantitative and consistent approach to estimate soil erosion and sediment yield under a wide range of conditions. In the present study, the soil loss model, Revised Universal Soil Loss Equation (RUSLE) integrated with GIS has been used to estimate soil loss in the Nethravathi Basin located in the southwestern part of India. The Nethravathi Basin is a tropical coastal humid area having a drainage area of 3128 km2 up to the gauging station. The parameters of RUSLE model were estimated using remote sensing data and the erosion probability zones were determined using GIS. The estimated rainfall erosivity, soil erodibility, topographic and crop management factors range from 2948.16 to 4711.4 MJ/mm.ha-1hr-1/year, 0.10 to 0.44 t ha-1 -MJ-1.mm 1, 0 to 92,774 and 0 to 0.63 respectively. The results indicate that the estimated total annual potential soil loss of about 473,339 t/yr is comparable with the measured sediment of 441,870 t/yr during the water year 2002 2003. The predicted soil erosion rate due to increase in agricultural area is about 14,673.5 t/yr. The probability zone map has been derived by the weighted overlay index method indicate that the major portion of the study area comes under low probability zone and only a small portion comes under high and very high probability zone. The results can certainly aid in implementation of soil management and conservation practices to reduce the soil erosion in the Nethravathi Basin.
文摘Shoreline extraction is fundamental and inevitable for several studies.Ascertaining the precise spatial location of the shoreline is crucial.Recently,the need for using remote sensing data to accomplish the complex task of automatic extraction of features,such as shoreline,has considerably increased.Automated feature extraction can drastically minimize the time and cost of data acquisition and database updating.Effective and fast approaches are essential to monitor coastline retreat and update shoreline maps.Here,we present a flexible mathematical morphology-driven approach for shoreline extraction algorithm from satellite imageries.The salient features of this work are the preservation of actual size and shape of the shorelines,run-time structuring element definition,semi-automation,faster processing,and single band adaptability.The proposed approach is tested with various sensor-driven images with low to high resolutions.Accuracy of the developed methodology has been assessed with manually prepared ground truths of the study area and compared with an existing shoreline classification approach.The proposed approach is found successful in shoreline extraction from the wide variety of satellite images based on the results drawn from visual and quantitative assessments.