A nonlocal elastic micro/nanobeam is theoretically modeled with the consideration of the surface elasticity, the residual surface stress, and the rotatory inertia,in which the nonlocal and surface effects are consider...A nonlocal elastic micro/nanobeam is theoretically modeled with the consideration of the surface elasticity, the residual surface stress, and the rotatory inertia,in which the nonlocal and surface effects are considered. Three types of boundary conditions, i.e., hinged-hinged, clamped-clamped, and clamped-hinged ends, are examined. For a hinged-hinged beam, an exact and explicit natural frequency equation is derived based on the established mathematical model. The Fredholm integral equation is adopted to deduce the approximate fundamental frequency equations for the clamped-clamped and clamped-hinged beams. In sum, the explicit frequency equations for the micro/nanobeam under three types of boundary conditions are proposed to reveal the dependence of the natural frequency on the effects of the nonlocal elasticity, the surface elasticity, the residual surface stress, and the rotatory inertia, providing a more convenient means in comparison with numerical computations.展开更多
基金School of Civil and Environmental Engineering at Nanyang Technological University, Singapore for kindly supporting this research topic.
文摘A nonlocal elastic micro/nanobeam is theoretically modeled with the consideration of the surface elasticity, the residual surface stress, and the rotatory inertia,in which the nonlocal and surface effects are considered. Three types of boundary conditions, i.e., hinged-hinged, clamped-clamped, and clamped-hinged ends, are examined. For a hinged-hinged beam, an exact and explicit natural frequency equation is derived based on the established mathematical model. The Fredholm integral equation is adopted to deduce the approximate fundamental frequency equations for the clamped-clamped and clamped-hinged beams. In sum, the explicit frequency equations for the micro/nanobeam under three types of boundary conditions are proposed to reveal the dependence of the natural frequency on the effects of the nonlocal elasticity, the surface elasticity, the residual surface stress, and the rotatory inertia, providing a more convenient means in comparison with numerical computations.