Dormancy represents a fascinating adaptive strategy for organisms to survive in unforgiving environments.After a period of dormancy,organisms often exhibit exceptional resilience.This period is typically divided into ...Dormancy represents a fascinating adaptive strategy for organisms to survive in unforgiving environments.After a period of dormancy,organisms often exhibit exceptional resilience.This period is typically divided into hibernation and aestivation based on seasonal patterns.However,the mechanisms by which organisms adapt to their environments during dormancy,as well as the potential relationships between different states of dormancy,deserve further exploration.Here,we selected Perccottus glenii and Protopterus annectens as the primary subjects to study hibernation and aestivation,respectively.Based on histological and transcriptomic analysis of multiple organs,we discovered that dormancy involved a coordinated functional response across organs.Enrichment analyses revealed noteworthy disparities between the two dormant species in their responses to extreme temperatures.Notably,similarities in gene expression patterns pertaining to energy metabolism,neural activity,and biosynthesis were noted during hibernation,suggesting a potential correlation between hibernation and aestivation.To further explore the relationship between these two phenomena,we analyzed other dormancy-capable species using data from publicly available databases.This comparative analysis revealed that most orthologous genes involved in metabolism,cell proliferation,and neural function exhibited consistent expression patterns during dormancy,indicating that the observed similarity between hibernation and aestivation may be attributable to convergent evolution.In conclusion,this study enhances our comprehension of the dormancy phenomenon and offers new insights into the molecular mechanisms underpinning vertebrate dormancy.展开更多
We demonstrate the transmission of a microwave frequency signal at 10 GHz over a 112-km urban fiber link based on a novel simple-architecture electronic phase compensation system.The key element of the system is the l...We demonstrate the transmission of a microwave frequency signal at 10 GHz over a 112-km urban fiber link based on a novel simple-architecture electronic phase compensation system.The key element of the system is the low noise frequency divider by 4 to differentiate the frequency of the forward signal from that of the backward one,thus suppressing the effect of Brillouin backscattering and parasitic reflection along the link.In terms of overlapping Allan deviation,the frequency transfer instability of 4.2×10-15 at 1-s integration time and 1.6×10-18 at one-day integration time was achieved.In addition,its sensitivity to the polarization mode dispersion in fiber is analyzed by comparing the results with and without laser polarization scrambling.Generally,with simplicity and robustness,the system can offer great potentials in constructing cascaded frequency transfer system and facilitate the building of fiber-based microwave transfer network.展开更多
We demonstrate a multi-branch all polarization-maintaining Er:fiber frequency comb with five application ports for precise measurement of atomic/molecular transition frequencies in the near-infrared region.A fully sta...We demonstrate a multi-branch all polarization-maintaining Er:fiber frequency comb with five application ports for precise measurement of atomic/molecular transition frequencies in the near-infrared region.A fully stabilized Er:fiber frequency comb with a nonlinear amplifying loop mirror is achieved.The in-loop relative instability of stabilized carrier-envelope-offset frequency is 5.6×10-18 at 1 s integration time,while that of the repetition rate is well below 1.8×10-12 limited by the measurement noise floor of the commercial frequency counter.Five application ports are individually optimized for applications with different wavelengths(1064 nm,1083 nm,1380 nm,1637 nm and 1750 nm).The beat note between the optical frequency comb and continuous laser exhibits the signal-to-noise ratio of at least 30 dB at a resolution bandwidth of 100 kHz.The in-loop frequency instability of the comb is evaluated to be good enough for measurement of rotation-resolved transitions of molecules below 1 kHz resolution.展开更多
We demonstrate the ultra-stable frequency sources aiming to improve the short-time instability of primary frequency standards.These sources are realized by using photonic generation approach,and composed of ultra-stab...We demonstrate the ultra-stable frequency sources aiming to improve the short-time instability of primary frequency standards.These sources are realized by using photonic generation approach,and composed of ultra-stable lasers,optical-frequency-combs,optical signal detecting parts,and synthesizers.Preliminary evaluation shows that the sources produce fixed-frequency at 9.54(/9.63)GHz,10 MHz,and tunable-frequency around 9.192 GHz with relative frequency instability of 10^(-15) for short terms.展开更多
We present two cavity-stabilized lasers at 1555 nm, which are built to be the frequency source for a transportable photonic microwave generation system. The frequency instability reaches the thermal noise limit (7 ...We present two cavity-stabilized lasers at 1555 nm, which are built to be the frequency source for a transportable photonic microwave generation system. The frequency instability reaches the thermal noise limit (7 ×10-16) of the 10-cm ultra-low expansion glass cavity at 1-10s averaging time and the beat signal of the two lasers reveals a remarkable linewidth of 185mHz.展开更多
We demonstrate an optical frequency comb(OFC)based on a turnkey mode-locked laser with a figure-9-shape structure and polarization-maintaining fibers,for the comparison of frequency among optical clocks with wavelengt...We demonstrate an optical frequency comb(OFC)based on a turnkey mode-locked laser with a figure-9-shape structure and polarization-maintaining fibers,for the comparison of frequency among optical clocks with wavelengths of 698 nm,729 nm,1068 nm,and 1156 nm.We adopt a multi-branch approach in order to produce high power OFC signals at these specific wavelengths,enabling the signal-to-noise ratio of the beatnotes between the OFC and the clock lasers to exceed30 d B at a resolution bandwidth of 300 k Hz.This approach makes the supercontinuum spectra much easier to be generated than a single branch OFC.However,more out-of-loop fibers degrade the long-term frequency instability due to thermal drift.To minimize the thermal drift effect,we set the fiber lengths of different branches to be similar,and we stabilize the temperature as well.The out-of-loop frequency instability of the OFC due to the incoherence of the multi-branch is about5.5×10^(19) for 4000 s,while the in-loop frequency instability of fceo and that of fbeat are 7.5×10^(18) for 1 s and 8.5×10^(18) for 1 s,respectively.The turnkey OFC meets the requirement for the comparison of frequency between the best optical clocks.展开更多
Highly nonlinear fibers(HNLFs) are crucial components for supercontinuum(SC) generation with laser solution.However, it is difficult to exactly estimate the structure of produced SC according to material parameters. T...Highly nonlinear fibers(HNLFs) are crucial components for supercontinuum(SC) generation with laser solution.However, it is difficult to exactly estimate the structure of produced SC according to material parameters. To give a guideline for choosing and using HNLFs for erbium-fiber-based optical applications, we demonstrate SC generation in five types of HNLFs pumped by 1.57-μm laser solitons. All five fibers output a SC exceeding 1000 nm. Three different SC formation processes were observed in the experiment. By comparing optical parameters of these fibers, we find the zero dispersion wavelength(ZDW) of fiber has an important influence on the SC structure and energy distribution for a given pump source.展开更多
In this paper, we demonstrate the residual phase noise of a few microwave frequency dividers which usually limit the performance of frequency synthesizers. In order to compare these dividers under different operation ...In this paper, we demonstrate the residual phase noise of a few microwave frequency dividers which usually limit the performance of frequency synthesizers. In order to compare these dividers under different operation frequencies, we calculate additional time jitters of these dividers by using the measured phase noise. The time jitters are various from -0.1 fs to 43 fs in a bandwidth from 1 Hz to 100 Hz in dependent of models and operation frequencies. The HMC series frequency dividers exhibit outstanding performance for high operation frequencies, and the time jitters can be sub-fs. The time jitters of SP8401, MC10EP139, and MC100LVEL34 are comparable or even below that of HMC series for low operation frequencies.展开更多
We have investigated the dynamics of bright solitons in a spin–orbit coupled spin-1 Bose–Einstein condensate analytically and numerically. By using the hyperbolic sine function as the trial function to describe a pl...We have investigated the dynamics of bright solitons in a spin–orbit coupled spin-1 Bose–Einstein condensate analytically and numerically. By using the hyperbolic sine function as the trial function to describe a plane wave bright soliton with a single finite momentum, we have derived the motion equations of soliton's spin and center of mass, and obtained its exact analytical solutions. Our results show that the spin–orbit coupling couples the soliton's spin with its center-of-mass motion, the spin oscillations induced by the exchange of atoms between components result in the periodical oscillation of center-of-mass, and the motion of center of mass of soliton can be viewed as a superposition of periodical and linear motions. Our analytical results have also been confirmed by the direct numerical simulations of Gross–Pitaevskii equations.展开更多
Future optical clock networks will require high-precision optical time-frequency transfer between satellites and ground stations.However,due to atmospheric turbulence,satellite motion and time delay between the satell...Future optical clock networks will require high-precision optical time-frequency transfer between satellites and ground stations.However,due to atmospheric turbulence,satellite motion and time delay between the satellite–ground transmission links will cause spatial and temporal variations,respectively,resulting in the breakdown of the time-of-flight reciprocity on which optical two-way time-frequency transfer is based.Here,we experimentally simulate the atmospheric effects by two-way spatio-temporally separated links between two stationary terminals located 113 km apart and measure the effects for optical two-way time-frequency transfer.Our experiment shows that the effect on the link instability is less than 2.3×10^(−19) at 10,000 s.This indicates that when the link instability of satellite-ground optical time-frequency transfer is on the order of 10^(−19),it is not necessary to consider the atmospheric non-reciprocity effects.展开更多
The discovery of neuroglobin(Ngb),a brain-or neuron-specific member of the hemoglobin family,has revolutionized our understanding of brain oxygen metabolism.Currently,how Ngb plays such a role remains far from clear.H...The discovery of neuroglobin(Ngb),a brain-or neuron-specific member of the hemoglobin family,has revolutionized our understanding of brain oxygen metabolism.Currently,how Ngb plays such a role remains far from clear.Here,we report a novel mechanism by which Ngb might facilitate neuronal oxygenation upon hypoxia or anemia.We found that Ngb was present in,co-localized to,and co-migrated with mitochondria in the cell body and neurites of neurons.Hypoxia induced a sudden and prominent migration of Ngb towards the cytoplasmic membrane(CM)or cell surface in living neurons,and this was accompanied by the mitochondria.In vivo,hypotonic and anemic hypoxia induced a reversible Ngb migration toward the CM in cerebral cortical neurons in rat brains but did not alter the expression level of Ngb or its cytoplasm/mitochondria ratio.Knock-down of Ngb by RNA interference significantly diminished respiratory succinate dehydrogenase(SDH)and ATPase activity in neuronal N2a cells.Over-expression of Ngb enhanced SDH activity in N2a cells upon hypoxia.Mutation of Ngb at its oxygen-binding site(His64)significantly increased SDH activity and reduced ATPase activity in N2a cells.Taken together,Ngb was physically and functionally linked to mitochondria.In response to an insufficient oxygen supply,Ngb migrated towards the source of oxygen to facilitate neuronal oxygenation.This novel mechanism of neuronal respiration provides new insights into the understanding and treatment of neurological diseases such as stroke and Alzheimer’s disease and diseases that cause hypoxia in the brain such as anemia.展开更多
基金supported by the National Natural Science Foundation of China (32170480,31972866)Youth Innovation Promotion Association,Chinese Academy of Sciences (http://www.yicas.cn)+1 种基金Young Top-notch Talent Cultivation Program of Hubei ProvinceWuhan Branch,Supercomputing Center,Chinese Academy of Sciences,China。
文摘Dormancy represents a fascinating adaptive strategy for organisms to survive in unforgiving environments.After a period of dormancy,organisms often exhibit exceptional resilience.This period is typically divided into hibernation and aestivation based on seasonal patterns.However,the mechanisms by which organisms adapt to their environments during dormancy,as well as the potential relationships between different states of dormancy,deserve further exploration.Here,we selected Perccottus glenii and Protopterus annectens as the primary subjects to study hibernation and aestivation,respectively.Based on histological and transcriptomic analysis of multiple organs,we discovered that dormancy involved a coordinated functional response across organs.Enrichment analyses revealed noteworthy disparities between the two dormant species in their responses to extreme temperatures.Notably,similarities in gene expression patterns pertaining to energy metabolism,neural activity,and biosynthesis were noted during hibernation,suggesting a potential correlation between hibernation and aestivation.To further explore the relationship between these two phenomena,we analyzed other dormancy-capable species using data from publicly available databases.This comparative analysis revealed that most orthologous genes involved in metabolism,cell proliferation,and neural function exhibited consistent expression patterns during dormancy,indicating that the observed similarity between hibernation and aestivation may be attributable to convergent evolution.In conclusion,this study enhances our comprehension of the dormancy phenomenon and offers new insights into the molecular mechanisms underpinning vertebrate dormancy.
基金National Natural Science Foundation of China(Grant Nos.61825505,91536217,and 61127901).
文摘We demonstrate the transmission of a microwave frequency signal at 10 GHz over a 112-km urban fiber link based on a novel simple-architecture electronic phase compensation system.The key element of the system is the low noise frequency divider by 4 to differentiate the frequency of the forward signal from that of the backward one,thus suppressing the effect of Brillouin backscattering and parasitic reflection along the link.In terms of overlapping Allan deviation,the frequency transfer instability of 4.2×10-15 at 1-s integration time and 1.6×10-18 at one-day integration time was achieved.In addition,its sensitivity to the polarization mode dispersion in fiber is analyzed by comparing the results with and without laser polarization scrambling.Generally,with simplicity and robustness,the system can offer great potentials in constructing cascaded frequency transfer system and facilitate the building of fiber-based microwave transfer network.
基金Supported by the National Natural Science Foundation of China(Grant Nos.61825505 and 91536217)。
文摘We demonstrate a multi-branch all polarization-maintaining Er:fiber frequency comb with five application ports for precise measurement of atomic/molecular transition frequencies in the near-infrared region.A fully stabilized Er:fiber frequency comb with a nonlinear amplifying loop mirror is achieved.The in-loop relative instability of stabilized carrier-envelope-offset frequency is 5.6×10-18 at 1 s integration time,while that of the repetition rate is well below 1.8×10-12 limited by the measurement noise floor of the commercial frequency counter.Five application ports are individually optimized for applications with different wavelengths(1064 nm,1083 nm,1380 nm,1637 nm and 1750 nm).The beat note between the optical frequency comb and continuous laser exhibits the signal-to-noise ratio of at least 30 dB at a resolution bandwidth of 100 kHz.The in-loop frequency instability of the comb is evaluated to be good enough for measurement of rotation-resolved transitions of molecules below 1 kHz resolution.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91536217,61127901,and 11775253)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2015334)The authors would like to thank special funds for scientific equipment development(YZ201518)from Chinese academy of sciences for the use of the developed equipment
文摘We demonstrate the ultra-stable frequency sources aiming to improve the short-time instability of primary frequency standards.These sources are realized by using photonic generation approach,and composed of ultra-stable lasers,optical-frequency-combs,optical signal detecting parts,and synthesizers.Preliminary evaluation shows that the sources produce fixed-frequency at 9.54(/9.63)GHz,10 MHz,and tunable-frequency around 9.192 GHz with relative frequency instability of 10^(-15) for short terms.
基金Supported by the National Natural Science Foundation of China under Grant No 91536217the West Light Foundation of the Chinese Academy of Sciences under Grant No 2013ZD02the Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant No 2015334
文摘We present two cavity-stabilized lasers at 1555 nm, which are built to be the frequency source for a transportable photonic microwave generation system. The frequency instability reaches the thermal noise limit (7 ×10-16) of the 10-cm ultra-low expansion glass cavity at 1-10s averaging time and the beat signal of the two lasers reveals a remarkable linewidth of 185mHz.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB35030101)the National Natural Science Foundation of China(Grant No.61825505)+1 种基金the Quantum Control and Quantum Information of the National Key Research and Development Program of China(Grant No.2020YFA0309800)the Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2020JQ434)。
文摘We demonstrate an optical frequency comb(OFC)based on a turnkey mode-locked laser with a figure-9-shape structure and polarization-maintaining fibers,for the comparison of frequency among optical clocks with wavelengths of 698 nm,729 nm,1068 nm,and 1156 nm.We adopt a multi-branch approach in order to produce high power OFC signals at these specific wavelengths,enabling the signal-to-noise ratio of the beatnotes between the OFC and the clock lasers to exceed30 d B at a resolution bandwidth of 300 k Hz.This approach makes the supercontinuum spectra much easier to be generated than a single branch OFC.However,more out-of-loop fibers degrade the long-term frequency instability due to thermal drift.To minimize the thermal drift effect,we set the fiber lengths of different branches to be similar,and we stabilize the temperature as well.The out-of-loop frequency instability of the OFC due to the incoherence of the multi-branch is about5.5×10^(19) for 4000 s,while the in-loop frequency instability of fceo and that of fbeat are 7.5×10^(18) for 1 s and 8.5×10^(18) for 1 s,respectively.The turnkey OFC meets the requirement for the comparison of frequency between the best optical clocks.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91536217 and 61825505)
文摘Highly nonlinear fibers(HNLFs) are crucial components for supercontinuum(SC) generation with laser solution.However, it is difficult to exactly estimate the structure of produced SC according to material parameters. To give a guideline for choosing and using HNLFs for erbium-fiber-based optical applications, we demonstrate SC generation in five types of HNLFs pumped by 1.57-μm laser solitons. All five fibers output a SC exceeding 1000 nm. Three different SC formation processes were observed in the experiment. By comparing optical parameters of these fibers, we find the zero dispersion wavelength(ZDW) of fiber has an important influence on the SC structure and energy distribution for a given pump source.
基金supported by the National Natural Science Foundation of China under Grant No.91336101 and No.61127901the West Light Foundation of the Chinese Academy of Sciences under Grant No.2013ZD02
文摘In this paper, we demonstrate the residual phase noise of a few microwave frequency dividers which usually limit the performance of frequency synthesizers. In order to compare these dividers under different operation frequencies, we calculate additional time jitters of these dividers by using the measured phase noise. The time jitters are various from -0.1 fs to 43 fs in a bandwidth from 1 Hz to 100 Hz in dependent of models and operation frequencies. The HMC series frequency dividers exhibit outstanding performance for high operation frequencies, and the time jitters can be sub-fs. The time jitters of SP8401, MC10EP139, and MC100LVEL34 are comparable or even below that of HMC series for low operation frequencies.
基金supported by the National Natural Science Foundation of China (Grant No. 11775253)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences (Grant No. ZDBS-LY-7016)。
文摘We have investigated the dynamics of bright solitons in a spin–orbit coupled spin-1 Bose–Einstein condensate analytically and numerically. By using the hyperbolic sine function as the trial function to describe a plane wave bright soliton with a single finite momentum, we have derived the motion equations of soliton's spin and center of mass, and obtained its exact analytical solutions. Our results show that the spin–orbit coupling couples the soliton's spin with its center-of-mass motion, the spin oscillations induced by the exchange of atoms between components result in the periodical oscillation of center-of-mass, and the motion of center of mass of soliton can be viewed as a superposition of periodical and linear motions. Our analytical results have also been confirmed by the direct numerical simulations of Gross–Pitaevskii equations.
基金National Key Research and Development Program of China(2020YFA0309800,2020YFC2200103)Strategic Priority Research Programme of Chinese Academy of Sciences(XDA15020400,XDB35030000)+5 种基金National Natural Science Foundation of China(12274398,61825505,T2125010)Anhui Initiative in Quantum Information Technologies(AHY010100)Key RD Plan of Shandong Province(2020CXGC010105,2021ZDPT01)Shanghai Municipal Science and Technology Major Project(2019SHZDZX01)Innovation Programme for Quantum Science and Technology(2021ZD0300100)Youth Innovation Promotion Association of the Chinese Academy of Sciences(2018492,2021457).
文摘Future optical clock networks will require high-precision optical time-frequency transfer between satellites and ground stations.However,due to atmospheric turbulence,satellite motion and time delay between the satellite–ground transmission links will cause spatial and temporal variations,respectively,resulting in the breakdown of the time-of-flight reciprocity on which optical two-way time-frequency transfer is based.Here,we experimentally simulate the atmospheric effects by two-way spatio-temporally separated links between two stationary terminals located 113 km apart and measure the effects for optical two-way time-frequency transfer.Our experiment shows that the effect on the link instability is less than 2.3×10^(−19) at 10,000 s.This indicates that when the link instability of satellite-ground optical time-frequency transfer is on the order of 10^(−19),it is not necessary to consider the atmospheric non-reciprocity effects.
基金This work was supported by the National Natural Science Foundation of China(81972362,82173197,and 81672504).
文摘The discovery of neuroglobin(Ngb),a brain-or neuron-specific member of the hemoglobin family,has revolutionized our understanding of brain oxygen metabolism.Currently,how Ngb plays such a role remains far from clear.Here,we report a novel mechanism by which Ngb might facilitate neuronal oxygenation upon hypoxia or anemia.We found that Ngb was present in,co-localized to,and co-migrated with mitochondria in the cell body and neurites of neurons.Hypoxia induced a sudden and prominent migration of Ngb towards the cytoplasmic membrane(CM)or cell surface in living neurons,and this was accompanied by the mitochondria.In vivo,hypotonic and anemic hypoxia induced a reversible Ngb migration toward the CM in cerebral cortical neurons in rat brains but did not alter the expression level of Ngb or its cytoplasm/mitochondria ratio.Knock-down of Ngb by RNA interference significantly diminished respiratory succinate dehydrogenase(SDH)and ATPase activity in neuronal N2a cells.Over-expression of Ngb enhanced SDH activity in N2a cells upon hypoxia.Mutation of Ngb at its oxygen-binding site(His64)significantly increased SDH activity and reduced ATPase activity in N2a cells.Taken together,Ngb was physically and functionally linked to mitochondria.In response to an insufficient oxygen supply,Ngb migrated towards the source of oxygen to facilitate neuronal oxygenation.This novel mechanism of neuronal respiration provides new insights into the understanding and treatment of neurological diseases such as stroke and Alzheimer’s disease and diseases that cause hypoxia in the brain such as anemia.