BACKGROUND:This study aims to explore the characteristics of the epithelial-to-mesenchymal transition(EMT)process and its underlying molecular mechanisms in the period of paraquat(PQ)-induced pulmonary fi brosis(PF).M...BACKGROUND:This study aims to explore the characteristics of the epithelial-to-mesenchymal transition(EMT)process and its underlying molecular mechanisms in the period of paraquat(PQ)-induced pulmonary fi brosis(PF).METHODS:Picrosirius red staining and collagen volume fraction were utilized to evaluate the pathological changes of PQ-induced PF in rats.Immunohistochemistry,Western blot,and real-time reverse transcriptase-polymerase chain reaction(RT-PCR)were used to measure the protein and gene expression of EMT markers,EMT-associated transcription factors,and regulators of EMT-related pathways,respectively.RESULTS:The collagen deposition in the alveolar septum and increased PF markers were characteristics of pathological changes in PQ-induced PF,reached a peak on day 14 after PQ poisoning,and then decreased on day 21.The protein and gene expression of the fibrosis marker,EMT markers,transcription factors,and regulators of EMT-related signaling pathways signifi cantly increased at diff erent time points after PQ poisoning compared with corresponding controls(P<0.05),and most of them reached a peak on day 14,followed by a decrease on day 21.The gene expression of EMT markers was significantly correlated with PF markers,transcription factors,and regulators of EMT-related signaling pathways(P<0.05).The mRNA expression of transcription factors was signifi cantly correlated with that of TGF-β1 and Smad2(P<0.05 or P<0.01),instead of Wnt2 andβ-catenin(P>0.05).CONCLUSIONS:EMT process plays a role in the PQ-induced PF,in which most PF and EMT markers have a peak phenomenon,and its underlying molecular mechanisms might be determined by further studies.展开更多
Structured light carrying orbital angular momentum(OAM)opens up a new physical dimension for studying light–matter interactions.Despite this,the complex fields created by OAM beams still remain largely unexplored in ...Structured light carrying orbital angular momentum(OAM)opens up a new physical dimension for studying light–matter interactions.Despite this,the complex fields created by OAM beams still remain largely unexplored in terms of their effects on surface plasmons.This paper presents a revelation of anomalous plasmon excitations in single particles and plasmon couplings of neighboring nanorods under OAM beams,which are forbidden using non-OAM sources.The plasmon excitation of single nanoparticles is determined both by photon spin angular momentum(SAM)and OAM and influenced by the locations of the nanoparticles.Specifically,when SAM and OAM are equal in magnitude and opposite in direction,a pure plasmon excitation along light propagation direction is achieved.Two plasmon dipoles show end-to-end antibonding coupling and side-by-side bounding coupling,which are the opposite of the typical couplings.Furthermore,we observe Fano resonance with a nanorod dimer:one aligned along light propagation direction acting as the bright mode and the other aligned along the global polarization direction of light acting as the dark mode,which is the opposite of the usual plasmonic Fano resonance.By taking advantage of the unique property of the OAM source,this investigation presents a novel way to control and study surface plasmons,and the research of plasmon behavior with OAM would open new avenues for controlling electromagnetic waves and enriching the spectroscopies with more degrees of freedom.展开更多
基金the National Natural Science Foundation of China(81472961)the Natural Science Foundation of Zhejiang Province(LY13H150001)the Zhejiang Provincial Program for the Cultivation of High-level Innovative Health Talents.
文摘BACKGROUND:This study aims to explore the characteristics of the epithelial-to-mesenchymal transition(EMT)process and its underlying molecular mechanisms in the period of paraquat(PQ)-induced pulmonary fi brosis(PF).METHODS:Picrosirius red staining and collagen volume fraction were utilized to evaluate the pathological changes of PQ-induced PF in rats.Immunohistochemistry,Western blot,and real-time reverse transcriptase-polymerase chain reaction(RT-PCR)were used to measure the protein and gene expression of EMT markers,EMT-associated transcription factors,and regulators of EMT-related pathways,respectively.RESULTS:The collagen deposition in the alveolar septum and increased PF markers were characteristics of pathological changes in PQ-induced PF,reached a peak on day 14 after PQ poisoning,and then decreased on day 21.The protein and gene expression of the fibrosis marker,EMT markers,transcription factors,and regulators of EMT-related signaling pathways signifi cantly increased at diff erent time points after PQ poisoning compared with corresponding controls(P<0.05),and most of them reached a peak on day 14,followed by a decrease on day 21.The gene expression of EMT markers was significantly correlated with PF markers,transcription factors,and regulators of EMT-related signaling pathways(P<0.05).The mRNA expression of transcription factors was signifi cantly correlated with that of TGF-β1 and Smad2(P<0.05 or P<0.01),instead of Wnt2 andβ-catenin(P>0.05).CONCLUSIONS:EMT process plays a role in the PQ-induced PF,in which most PF and EMT markers have a peak phenomenon,and its underlying molecular mechanisms might be determined by further studies.
基金Ministry of Science and Technology of the People's Republic of China(2020YFA0211303)National Natural Science Foundation of China(11974108,12074296,12204169,12211530044)。
文摘Structured light carrying orbital angular momentum(OAM)opens up a new physical dimension for studying light–matter interactions.Despite this,the complex fields created by OAM beams still remain largely unexplored in terms of their effects on surface plasmons.This paper presents a revelation of anomalous plasmon excitations in single particles and plasmon couplings of neighboring nanorods under OAM beams,which are forbidden using non-OAM sources.The plasmon excitation of single nanoparticles is determined both by photon spin angular momentum(SAM)and OAM and influenced by the locations of the nanoparticles.Specifically,when SAM and OAM are equal in magnitude and opposite in direction,a pure plasmon excitation along light propagation direction is achieved.Two plasmon dipoles show end-to-end antibonding coupling and side-by-side bounding coupling,which are the opposite of the typical couplings.Furthermore,we observe Fano resonance with a nanorod dimer:one aligned along light propagation direction acting as the bright mode and the other aligned along the global polarization direction of light acting as the dark mode,which is the opposite of the usual plasmonic Fano resonance.By taking advantage of the unique property of the OAM source,this investigation presents a novel way to control and study surface plasmons,and the research of plasmon behavior with OAM would open new avenues for controlling electromagnetic waves and enriching the spectroscopies with more degrees of freedom.