基于密度泛函理论(Density functional theory,DFT),M06-2X/6-311G(d,p)基组水平下对加替沙星分子的初始结构进行优化.计算其振动频率,采用VEDA4软件基于势能分布(Potential energy distribution,PED)计算结果对特征振动模式进行了归属...基于密度泛函理论(Density functional theory,DFT),M06-2X/6-311G(d,p)基组水平下对加替沙星分子的初始结构进行优化.计算其振动频率,采用VEDA4软件基于势能分布(Potential energy distribution,PED)计算结果对特征振动模式进行了归属指认,并和实验光谱进行了对比.绘制了分子表面静电势,分析分子可能发生亲电和亲核反应的位点.利用含时密度泛函理论(Time-dependent density functional theory,TDDFT)计算了加替沙星分子的激发态,讨论了加替沙星分子内的电子跃迁.该研究为分析加替沙星的光谱和电子结构提供了理论基础.展开更多
研究有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响,探索糯玉米生产中有机肥与化肥的最佳配施比例,为河北省鲜食糯玉米优质栽培提供理论依据。2021和2022年设置田间试验,以糯玉米品种斯达糯41为试验材料,采用随机区组设计,...研究有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响,探索糯玉米生产中有机肥与化肥的最佳配施比例,为河北省鲜食糯玉米优质栽培提供理论依据。2021和2022年设置田间试验,以糯玉米品种斯达糯41为试验材料,采用随机区组设计,设置不施氮(T1)、常量化肥氮(T2)、有机肥替代20%化肥氮(T3)、有机肥替代40%化肥氮(T4)、有机肥替代60%化肥氮(T5)和有机肥替代100%化肥氮(T6)共6个处理。结果表明,与T2处理相比,T3、T4和T5处理提高了糯玉米鲜果穗产量,分别增加3.08%、13.61%、3.20%;T3~T6处理下氮素利用效率降低,T3、T4和T5处理氮肥偏生产力和氮肥农学效率增加。与T2处理相比,T3~T5处理提高了糯玉米外观和品尝品质评分,其中T4处理总评分最高,这主要是因为有机肥替代部分化肥氮增加了籽粒总淀粉和支链淀粉含量,降低了籽粒蛋白质和可溶性糖含量,同时改善了籽粒质构特性,籽粒硬度、弹性和咀嚼性增加,内聚性降低。综上所述,在总施氮量为180 kg hm^(–2)条件下,有机肥替代部分化肥氮的比例为总施氮量40%时可以实现糯玉米鲜果穗产量和品质的协同提高。展开更多
[ Objective] To investigate the effects of planting date on development and yield of forage maize and to determine the appropriate plant- ing date for forage maize. [ Method] Using forage maize 50 as experimental mate...[ Objective] To investigate the effects of planting date on development and yield of forage maize and to determine the appropriate plant- ing date for forage maize. [ Method] Using forage maize 50 as experimental material, the development of forage maize was observed, and the yield of forage in the later grain filling period and mature stage was measured, after the maize were planted at different dates, r Remltl With the delaying planting date, phenological period was delayed, and the duration of the same growing stage was shortened among different treatments. The shor- test duration days of anthesis maturity period appeared in the treatment of planting in June 15, and the duration days of anthesis maturity period was increased in the treatment of planting in June 30. With the delaying planting date, the height of maize plant in the five leaf stage was increased. The highest plant in the jointing stage appeared in the treatment of planting in June 15. However, the highest plant appeared in the treatment of planting in May 30 after the jointing stage. The number of green leaves per plant was reduced with the delaying planting date in the tasseling stage, and it was increased with the delaying planting date from later grain filling period to mature stage. With the delaying planting date, the fresh matter yield, forage yield and grain yield were reduced. [ Conclusion] The study provides theoretical and practical reference for high-yield cultivation of forage maize.展开更多
文摘基于密度泛函理论(Density functional theory,DFT),M06-2X/6-311G(d,p)基组水平下对加替沙星分子的初始结构进行优化.计算其振动频率,采用VEDA4软件基于势能分布(Potential energy distribution,PED)计算结果对特征振动模式进行了归属指认,并和实验光谱进行了对比.绘制了分子表面静电势,分析分子可能发生亲电和亲核反应的位点.利用含时密度泛函理论(Time-dependent density functional theory,TDDFT)计算了加替沙星分子的激发态,讨论了加替沙星分子内的电子跃迁.该研究为分析加替沙星的光谱和电子结构提供了理论基础.
文摘研究有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响,探索糯玉米生产中有机肥与化肥的最佳配施比例,为河北省鲜食糯玉米优质栽培提供理论依据。2021和2022年设置田间试验,以糯玉米品种斯达糯41为试验材料,采用随机区组设计,设置不施氮(T1)、常量化肥氮(T2)、有机肥替代20%化肥氮(T3)、有机肥替代40%化肥氮(T4)、有机肥替代60%化肥氮(T5)和有机肥替代100%化肥氮(T6)共6个处理。结果表明,与T2处理相比,T3、T4和T5处理提高了糯玉米鲜果穗产量,分别增加3.08%、13.61%、3.20%;T3~T6处理下氮素利用效率降低,T3、T4和T5处理氮肥偏生产力和氮肥农学效率增加。与T2处理相比,T3~T5处理提高了糯玉米外观和品尝品质评分,其中T4处理总评分最高,这主要是因为有机肥替代部分化肥氮增加了籽粒总淀粉和支链淀粉含量,降低了籽粒蛋白质和可溶性糖含量,同时改善了籽粒质构特性,籽粒硬度、弹性和咀嚼性增加,内聚性降低。综上所述,在总施氮量为180 kg hm^(–2)条件下,有机肥替代部分化肥氮的比例为总施氮量40%时可以实现糯玉米鲜果穗产量和品质的协同提高。
基金funded by the National Key Technology R&D Program for Food Production ( 2011BAD16B08)
文摘[ Objective] To investigate the effects of planting date on development and yield of forage maize and to determine the appropriate plant- ing date for forage maize. [ Method] Using forage maize 50 as experimental material, the development of forage maize was observed, and the yield of forage in the later grain filling period and mature stage was measured, after the maize were planted at different dates, r Remltl With the delaying planting date, phenological period was delayed, and the duration of the same growing stage was shortened among different treatments. The shor- test duration days of anthesis maturity period appeared in the treatment of planting in June 15, and the duration days of anthesis maturity period was increased in the treatment of planting in June 30. With the delaying planting date, the height of maize plant in the five leaf stage was increased. The highest plant in the jointing stage appeared in the treatment of planting in June 15. However, the highest plant appeared in the treatment of planting in May 30 after the jointing stage. The number of green leaves per plant was reduced with the delaying planting date in the tasseling stage, and it was increased with the delaying planting date from later grain filling period to mature stage. With the delaying planting date, the fresh matter yield, forage yield and grain yield were reduced. [ Conclusion] The study provides theoretical and practical reference for high-yield cultivation of forage maize.