随着互联网技术的迅速发展和普及,越来越多的用户开始通过社会网络进行各种信息的分享与交流。网络中同一用户可能申请多个不同账号进行信息发布,这些账号构成了网络中的关联用户。准确、有效地挖掘社会网络中的关联用户能够抑制网络中...随着互联网技术的迅速发展和普及,越来越多的用户开始通过社会网络进行各种信息的分享与交流。网络中同一用户可能申请多个不同账号进行信息发布,这些账号构成了网络中的关联用户。准确、有效地挖掘社会网络中的关联用户能够抑制网络中的虚假信息和不法行为,从而保证网络环境的安全性和公平性。现有的关联用户挖掘方法仅考虑了用户属性或用户关系信息,未对网络中含有的多类信息进行有效融合以及综合考虑。此外,大多数方法借鉴其他领域的方法进行研究,如去匿名化问题,这些方法不能准确解决关联用户挖掘问题。为此,文中针对网络关联用户挖掘问题,提出了基于多信息融合表示学习的关联用户挖掘算法(Associated Users Mining Algorithm based on Multi-information fusion Representation Learning,AUMA-MRL)。该算法使用网络表示学习的思想对网络中多种不同维度的信息(如用户属性、网络拓扑结构等)进行学习,并将学习得到的表示进行有效融合,从而得到多信息融合的节点嵌入。这些嵌入可以准确表征网络中的多类信息,基于习得的节点嵌入构造相似性向量,从而对网络中的关联用户进行挖掘。文中基于3个真实网络数据对所提算法进行验证,实验网络数据包括蛋白质网络PPI以及社交网络Flickr和Facebook,使用关联用户挖掘结果的精度和召回率作为性能评价指标对所提算法进行有效性验证。结果表明,与现有经典算法相比,所提算法的召回率平均提高了17.5%,能够对网络中的关联用户进行有效挖掘。展开更多
链接预测问题是复杂网络分析领域的重要问题.现有链接预测方法大多针对静态网络,忽视了动态信息在网络中的传播.为此,针对动态网络中的链接预测问题,本文提出了一种基于动态网络表示的链接预测(dynamic network representation based li...链接预测问题是复杂网络分析领域的重要问题.现有链接预测方法大多针对静态网络,忽视了动态信息在网络中的传播.为此,针对动态网络中的链接预测问题,本文提出了一种基于动态网络表示的链接预测(dynamic network representation based link prediction,DNRLP)模型.该模型对网络中不均匀的动态信息进行了学习,提出了基于连接强度的随机游走算法来模拟动态信息在网络中的扩散,从而得到新时刻下的节点表示,然后通过度量节点表示之间的相似度进行链接预测.实验使用平均交互排序(mean reciprocal rank,MRR)和召回率(Recall@k)指标在四个公开动态网络数据集上进行实验,结果显示DNRLP模型的MRR指标较对比模型平均提高了30.8%.实验结果表明DNRLP模型不仅学习了网络中的动态信息,还考虑了其对邻居节点的影响以及时间间隔对信息更新的影响,得到了更为丰富的节点表示,对于链接预测任务具有明显优势.展开更多
Saposhnikovia divaricata(Turcz.)Schischk(S.divaricata,Fangfeng)is a herb in the Apiaceae family,and its root has been used since the Western Han Dynasty(202 B.C.).Chromones and coumarins are the pharmacologically acti...Saposhnikovia divaricata(Turcz.)Schischk(S.divaricata,Fangfeng)is a herb in the Apiaceae family,and its root has been used since the Western Han Dynasty(202 B.C.).Chromones and coumarins are the pharmacologically active substances in S.divaricata.Modern phytochemical and pharmacological studies have demonstrated their antipyretic,analgesic,anti-inflammatory,antioxidant,anti-tumor,and anticoagulant activities.Technological and analytical strategy theory advancements have yielded novel results;however,most investigations have been limited to the main active substances—chromones and coumarins.Hence,we reviewed studies related to the chemical composition and pharmacological activity of S.divaricata,analyzed the developing trends and challenges,and proposed that research should focus on components’synergistic effects.We also suggested that,the structure-effect relationship should be prioritized in advanced research.展开更多
文摘随着互联网技术的迅速发展和普及,越来越多的用户开始通过社会网络进行各种信息的分享与交流。网络中同一用户可能申请多个不同账号进行信息发布,这些账号构成了网络中的关联用户。准确、有效地挖掘社会网络中的关联用户能够抑制网络中的虚假信息和不法行为,从而保证网络环境的安全性和公平性。现有的关联用户挖掘方法仅考虑了用户属性或用户关系信息,未对网络中含有的多类信息进行有效融合以及综合考虑。此外,大多数方法借鉴其他领域的方法进行研究,如去匿名化问题,这些方法不能准确解决关联用户挖掘问题。为此,文中针对网络关联用户挖掘问题,提出了基于多信息融合表示学习的关联用户挖掘算法(Associated Users Mining Algorithm based on Multi-information fusion Representation Learning,AUMA-MRL)。该算法使用网络表示学习的思想对网络中多种不同维度的信息(如用户属性、网络拓扑结构等)进行学习,并将学习得到的表示进行有效融合,从而得到多信息融合的节点嵌入。这些嵌入可以准确表征网络中的多类信息,基于习得的节点嵌入构造相似性向量,从而对网络中的关联用户进行挖掘。文中基于3个真实网络数据对所提算法进行验证,实验网络数据包括蛋白质网络PPI以及社交网络Flickr和Facebook,使用关联用户挖掘结果的精度和召回率作为性能评价指标对所提算法进行有效性验证。结果表明,与现有经典算法相比,所提算法的召回率平均提高了17.5%,能够对网络中的关联用户进行有效挖掘。
文摘链接预测问题是复杂网络分析领域的重要问题.现有链接预测方法大多针对静态网络,忽视了动态信息在网络中的传播.为此,针对动态网络中的链接预测问题,本文提出了一种基于动态网络表示的链接预测(dynamic network representation based link prediction,DNRLP)模型.该模型对网络中不均匀的动态信息进行了学习,提出了基于连接强度的随机游走算法来模拟动态信息在网络中的扩散,从而得到新时刻下的节点表示,然后通过度量节点表示之间的相似度进行链接预测.实验使用平均交互排序(mean reciprocal rank,MRR)和召回率(Recall@k)指标在四个公开动态网络数据集上进行实验,结果显示DNRLP模型的MRR指标较对比模型平均提高了30.8%.实验结果表明DNRLP模型不仅学习了网络中的动态信息,还考虑了其对邻居节点的影响以及时间间隔对信息更新的影响,得到了更为丰富的节点表示,对于链接预测任务具有明显优势.
基金Supported by Jilin Scientific and Technology Development Program(No.20210204011YY)。
文摘Saposhnikovia divaricata(Turcz.)Schischk(S.divaricata,Fangfeng)is a herb in the Apiaceae family,and its root has been used since the Western Han Dynasty(202 B.C.).Chromones and coumarins are the pharmacologically active substances in S.divaricata.Modern phytochemical and pharmacological studies have demonstrated their antipyretic,analgesic,anti-inflammatory,antioxidant,anti-tumor,and anticoagulant activities.Technological and analytical strategy theory advancements have yielded novel results;however,most investigations have been limited to the main active substances—chromones and coumarins.Hence,we reviewed studies related to the chemical composition and pharmacological activity of S.divaricata,analyzed the developing trends and challenges,and proposed that research should focus on components’synergistic effects.We also suggested that,the structure-effect relationship should be prioritized in advanced research.