The increasing demand in spectroscopy and sensing calls for infrared(mid-IR)light sources.Here,we theoretically investigate nonlinear wavelength conversion of Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguide in the m...The increasing demand in spectroscopy and sensing calls for infrared(mid-IR)light sources.Here,we theoretically investigate nonlinear wavelength conversion of Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguide in the mid-IR spectral regime.With waveguide dispersion engineering,we predict generation of over an octave wavelength(2.8μm-5.9μm)tuning range Raman soliton self-frequency shift,over 2.5 octaves wavelength cover range supercontinuum(1.2μm-8.0μm),as well as single soliton Kerr comb generated in suspended Ge_(28)Sb_(12)Se_(60)waveguide.Our findings evidenced that Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguides can simultaneously satisfy the generation of Raman soliton self-frequency shift,supercontinuum spectrum,and Kerr frequency comb generation through dispersion engineering towards mid-IR on chip.展开更多
Hydrogen production through hydrogen evolution reaction(HER)offers a promising solution to combat climate change by replacing fossil fuels with clean energy sources.However,the widespread adoption of efficient electro...Hydrogen production through hydrogen evolution reaction(HER)offers a promising solution to combat climate change by replacing fossil fuels with clean energy sources.However,the widespread adoption of efficient electrocatalysts,such as platinum(Pt),has been hindered by their high cost.In this study,we developed an easy-to-implement method to create ultrathin Pt nanomembranes,which catalyze HER at a cost significantly lower than commercial Pt/C and comparable to non-noble metal electrocatalysts.These Pt nanomembranes consist of highly distorted Pt nanocrystals and exhibit a heterogeneous elastic strain field,a characteristic rarely seen in conventional crystals.This unique feature results in significantly higher electrocatalytic efficiency than various forms of Pt electrocatalysts,including Pt/C,Pt foils,and numerous Pt singleatom or single-cluster catalysts.Our research offers a promising approach to develop highly efficient and cost-effective low-dimensional electrocatalysts for sustainable hydrogen production,potentially addressing the challenges posed by the climate crisis.展开更多
After the outbreak of World War I,the British War Office decided to dispatch female nursing personnel to the front lines due to the severe casualties among soldiers,the underdeveloped military medical services of the ...After the outbreak of World War I,the British War Office decided to dispatch female nursing personnel to the front lines due to the severe casualties among soldiers,the underdeveloped military medical services of the allied forces,and the maturity of the British Army female nursing service.Despite the harsh working conditions and the complexities of nurse-patient relationships under wartime restrictions,the female nursing staff also experienced moments of leisure that allowed them to relax and recuperate.The wartime British Army Female Nursing Service had a positive effect in reducing casualties and promoting the development of the official nurse registration movement.展开更多
Objective:To explore the mechanism of Huatan Sanjie Fang(HTSJ)in regulating goiter in Graves'disease(GD)mice by detecting key factors of the Hippo signaling pathway.Methods:A mouse model of GD was established by i...Objective:To explore the mechanism of Huatan Sanjie Fang(HTSJ)in regulating goiter in Graves'disease(GD)mice by detecting key factors of the Hippo signaling pathway.Methods:A mouse model of GD was established by injecting Ad-TSHR289 adenovirus into the bilateral quadriceps femoris of female mice.Successful mouse models were then randomly divided into a model group,methimazole(MMI)group,and HTSJ group,and fed with deionized water,MMI(4.5 mg/kg per day),and HTSJ(35.10 g/kg per day),respectively,for 10 weeks.Histopathological changes of the thyroid gland were subsequently observed by hematoxylin-eosin staining.Radioimmunoassay was used to detect serum total thyroxine(T4)and thyrotrophin-receptor antibody(TRAb)levels.The relative expression of mRNA of Mst1,YAP,and TAZ were detected by quantitative real-time polymerase chain reaction,while the protein expression of Mst1,YAP,TAZ,pMst1,and pYAP were detected by western blot.Results:After 10 weeks of drug intervention,goiter and other pathological changes in the HTSJ group significantly improved compared with the model group,and the levels of serum T4 and TRAb significantly decreased(P=.002,P<.001,respectively).Decreased mRNA expression of Mst1,YAP,and TAZ,the key factors of the Hippo signaling transduction pathway,was also observed(P=.002,P=.022,P<.001,respectively).In contrast,protein expression of Mst1(P=.046),pMst1(P=.026),and p YAP(P=.004)increased,while protein expression of YAP and TAZ decreased(P=.041,P<.001,respectively).Conclusion:HTSJ can effectively improve goiter in GD mice through the Hippo signaling pathway.展开更多
Metallic few-layered 1T phase vanadium disulfide nanosheets have been employed for boosting sodium ion batteries.It can deliver a capacity of 241 mAh∙g^(−1)at 100 mA∙g^(−1)after 200 cycles.Such long-term stability is ...Metallic few-layered 1T phase vanadium disulfide nanosheets have been employed for boosting sodium ion batteries.It can deliver a capacity of 241 mAh∙g^(−1)at 100 mA∙g^(−1)after 200 cycles.Such long-term stability is attributed to the facile ion diffusion and electron transport resulting from the well-designed two-dimensional(2D)electron-electron correlations among V atoms in the 1T phase and optimized in-planar electric transport.Our results highlight the phase engineering into electrode design for energy storage.展开更多
Inflammatory orofacial pain,in which substance P (SP) plays an important role,is closely related to the cross-talk between trigeminal ganglion (TG) neurons and satellite glial cells (SGCs).SGC activation is emerging a...Inflammatory orofacial pain,in which substance P (SP) plays an important role,is closely related to the cross-talk between trigeminal ganglion (TG) neurons and satellite glial cells (SGCs).SGC activation is emerging as the key mechanism underlying inflammatory pain through different signalling mechanisms,including glial fibrillary acidic protein (GFAP) activation,phosphorylation of mitogen-activated protein kinase (MAPK) signalling pathways,and cytokine upregulation.However,in the TG,the mechanism underlying SP-mediated orofacial pain generated by SGCs is largely unknown.In this study,we investigated whether SP is involved in inflammatory orofacial pain by upregulating interleukin (IL)-1β and tumour necrosis factor (TNF)-α from SGCs,and we explored whether MAPK signalling pathways mediate the pain process.In the present study,complete Freund’s adjuvant (CFA) was injected into the whisker pad of rats to induce an inflammatory model in vivo.SP was administered to SGC cultures in vitro to confirm the effect of SP.Facial expression analysis showed that pre-injection of L703,606 (an NK-1 receptor antagonist),U0126 (an inhibitor of MAPK/extracellular signal-regulated kinase [ERK] kinase [MEK] 1/2),and SB203580 (an inhibitor of P38) into the TG to induce targeted prevention of the activation of the NK-1 receptor and the phosphorylation of MAPKs significantly suppressed CFA-induced inflammatory allodynia.In addition,SP promoted SGC activation,which was proven by increased GFAP,p-MAPKs,IL-1β and TNF-α in SGCs under inflammatory conditions.Moreover,the increase in IL-1β and TNF-α was suppressed by L703,606,U0126 and SB203580 in vivo and in vitro.These present findings suggested that SP,released from TG neurons,activated SGCs through the ERK1/2 and P38 pathways and promoted the production of IL-1β and TNF-α from SGCs,contributing to inflammatory orofacial pain associated with peripheral sensitization.展开更多
A comprehensive two-dimensional axisymmetric mathematical model that couples transient electromagnetic force with fluid flow,heat transfer,and solidification was established to describe the interaction of multiphysics...A comprehensive two-dimensional axisymmetric mathematical model that couples transient electromagnetic force with fluid flow,heat transfer,and solidification was established to describe the interaction of multiphysics field during DC casting.The melt flow,heat transfer,and solidification characteristics under differential phase pulse magnetic field and differential phase low-frequency electromagnetic field(DP-PMF and DP-LFEF)were numerically investigated by means of numerical simulation during electromagnetic direct-chill(DC)casting of AZ31 alloy at the same casting conditions.The effects of differential phase electromagnetic fields on Lorentz forces distributions,melt flow,heat transfer,and liquid sump shape were discussed systematically.Based on measured current waveform,the results were compared with those obtained without magnetic field(MF)and under conventional pulse magnetic field(PMF)and low-frequency electromagnetic field(LFEF)under the same conditions.The results show that the application of magnetic fields can significantly change the solidification process of DC casting.Differential phase magnetic fields(DP-LFEF and DP-PMF)can effectively reduce the temperature of the melt in the liquid sump,and the shallower liquid sump depth can be obtained under the differential phase magnetic fields.A large velocity vibration amplitude and a lower temperature are available simultaneously under DP-PMF,resulting in more uniform temperature distribution.展开更多
Objective: To reveal the mechanism of Mahuang Lianqiao Chixiaodou decoction and its disassembled formula for improving the skin barrier function in a mouse model of atopic dermatitis(AD).Methods: Sixty specific-pathog...Objective: To reveal the mechanism of Mahuang Lianqiao Chixiaodou decoction and its disassembled formula for improving the skin barrier function in a mouse model of atopic dermatitis(AD).Methods: Sixty specific-pathogen free male BALB/c mice were randomly divided into the control group,model group, whole formula group(WF), exterior-releasing formula group(ERF), interior-clearing formula group(ICF), and positive control group(PC). A mouse model of AD was established using the semiantigen 2,4-dinitrofluorobenzene induction method. The lesion scores, transepidermal water loss and p H, and skin histopathology of mice in each group were observed. The expressions of filaggrin, loricrin,and involucrin were detected by the streptavidin peroxidase immunohistochemical method and western blotting, and their mRNA expressions were detected by quantitative polymerase chain reaction.Results: Mice in the WF, ERF, ICF, and PC groups showed reduced skin lesion performance, improved histopathology, decreased skin lesion score, transepidermal water loss and pH, and upregulated expressions of proteins including filaggrin, loricrin, and involucrin, and their mRNAs. The most obvious regulatory effect was observed in the WF group, followed by the ICF, ERF, and PC groups, accordingly.Conclusions: Mahuang Lianqiao Chixiaodou decoction and its disassembled formula can improve the skin barrier function in a mouse model of AD by upregulating filaggrin, loricrin, and involucrin, and their mRNA expressions, and the most optimal effect was noted in the WF group, followed by the ICF and ERF groups, which suggests that the effect of clearing heat and resolving dampness in improving the skin barrier function of AD is more obvious and is one of the key treatments for AD.展开更多
Seismic hazard analysis is gaining increased attention in the present era because of the catastrophic effects of earthquakes.Scientists always have as a goal to develop new techniques that will help forecast earthquak...Seismic hazard analysis is gaining increased attention in the present era because of the catastrophic effects of earthquakes.Scientists always have as a goal to develop new techniques that will help forecast earthquakes before their reoccurrence. In this research,we have performed a shear failure experiment on rock samples with prefabricated cracks to simulate the process of plate movement that forms strike-slip faults. We studied the evolution law of the deformation field to simulate the shear failure experiment, and these results gave us a comprehensive understanding of the elaborate strain distribution law and its formation process with which to identify actual fault zones. We performed uniaxial compression tests on marble slabs with prefabricated double shear cracks to study the distribution and evolution of the deformation field during shear failure. Analysis of the strain field at different loading stages showed that with an increase in the load, the shear strain field initially changed to a disordered-style distribution. Further, the strain field was partially concentrated and finally completely concentrated near the crack and then distributed in the shape of a strip along the crack. We also computed coefficients of variation(CVs) for the physical quantities u, v, and exy, which varied with the load. The CV curves were found to correspond to the different loading stages. We found that at the uniform deformation stage, the CV value was small and changed slowly,whereas at the later nonuniform deformation stage, the CV value increased sharply and changed abruptly. Therefore, the precursor to a rock sample breakdown can be predicted by observing the variation characteristics of CV statistics. The correlation we found between our experimental and theoretical results revealed that our crack evolution and sample deformation results showed good coupling with seismic distribution characteristics near the San Andreas Fault.展开更多
Entanglement is the key resource in quantum information processing,and an entanglement witness(EW)is designed to detect whether a quantum system has any entanglement.However,prior knowledge of the target states should...Entanglement is the key resource in quantum information processing,and an entanglement witness(EW)is designed to detect whether a quantum system has any entanglement.However,prior knowledge of the target states should be known first to design a suitable EW,which weakens this method.Nevertheless,a recent theory shows that it is possible to design a universal entanglement witness(UEW)to detect negative-partial-transpose(NPT)entanglement in unknown bipartite states with measurement-device-independent(MDI)characteristic.The outcome of a UEW can also be upgraded to be an entanglement measure.In this study,we experimentally design and realize an MDI UEW for two-qubit entangled states.All of the tested states are well-detected without any prior knowledge.We also show that it is able to quantify entanglement by comparing it with concurrence estimated through state tomography.The relation between them is also revealed.The entire experimental framework ensures that the UEW is MDI.展开更多
BACKGROUND Ischemia-reperfusion injury(IRI) is a major risk associated with liver surgery and transplantation,and its pathological mechanism is complex.Interleukin-1 receptor antagonist(IL-1ra) can protect the liver f...BACKGROUND Ischemia-reperfusion injury(IRI) is a major risk associated with liver surgery and transplantation,and its pathological mechanism is complex.Interleukin-1 receptor antagonist(IL-1ra) can protect the liver from IRI.However,the regulatory mechanism of IL-1ra expression is still unclear.AIM To identify the mechanism that could protect the liver in the early stage of IRI.METHODS To screen the key genes in hepatic IRI,we performed RNA sequencing and gene enrichment analysis on liver tissue from mice with hepatic IRI.Subsequently,we verified the expression and effect of IL-1ra in hepatic IRI.We also used promoter mutagenesis and chromatin immunoprecipitation assay to search for the transcriptional regulatory sites of hypoxia-inducible factor(HIF)-1α.Finally,to explore the protective mechanism of ischemic preconditioning(IP),we examined the expression of HIF-1α and IL-1ra after IP.RESULTS We identified IL-1ra as a key regulator in hepatic IRI.The expression of IL-1ra was significantly upregulated after hepatic IRI both in vivo and in vitro.Furthermore,we found that HIF-1αregulated Il-1ra transcription in response to hypoxia.Increased HIF-1α accumulation promoted IL-1ra expression,whereas inhibition of HIF-1α exhibited the opposite effect.We also confirmed a predominant role for hypoxia response element in the regulation of Il1ra transcription by HIF-1αactivation.Of note,we demonstrated that IP protects against hepatic IRI by inducing IL-1ra expression,which is mediated through HIF-1α.CONCLUSION We demonstrated that ischemia or hypoxia leads to increased expression of IL-1ra through HIF-1α.Importantly,IP protects the liver from IRI via the HIF-1α–IL-1ra pathway.展开更多
Chlorogenic acid(5-caffeoylquinic acid, CGA) is a phenolic compound that is found ubiquitously in plants, fruits and vegetables and is formed via the esterification of caffeic acid and quinic acid. In addition to it...Chlorogenic acid(5-caffeoylquinic acid, CGA) is a phenolic compound that is found ubiquitously in plants, fruits and vegetables and is formed via the esterification of caffeic acid and quinic acid. In addition to its notable biological functions against cardiovascular diseases, type-2 diabetes and inflammatory conditions, CGA was recently hypothesized to be an alternative for the treatment of neurological diseases such as Alzheimer's disease and neuropathic pain disorders. However, its mechanism of action is unclear.Voltage-gated potassium channel(Kv) is a crucial factor in the electro-physiological processes of sensory neurons. Kv has also been identified as a potential therapeutic target for inflammation and neuropathic pain disorders. In this study, we analysed the effects of CGA on the two main subtypes of Kv in trigeminal ganglion neurons, namely, the IK,Aand IK,Vchannels. Trigeminal ganglion(TRG)neurons were acutely disassociated from the rat TRG, and two different doses of CGA(0.2 and 1 mmol·L21) were applied to the cells.Whole-cell patch-clamp recordings were performed to observe alterations in the activation and inactivation properties of the IK,Aand IK,Vchannels. The results demonstrated that 0.2 mmol·L21CGA decreased the peak current density of IK,A. Both 0.2 mmol·L21and1 mmol·L21CGA also caused a significant reduction in the activation and inactivation thresholds of IK,Aand IK,V. CGA exhibited a strong effect on the activation and inactivation velocities of IK,Aand IK,V. These findings provide novel evidence explaining the biological effects of CGA, especially regarding its neurological effects.展开更多
Platinum(Pt)-based electrocatalysts remain the only practical cathode catalysts for proton exchange membrane water electrolysis(PEMWE),due to their excellent catalytic activity for acidic hydrogen evolution reaction(H...Platinum(Pt)-based electrocatalysts remain the only practical cathode catalysts for proton exchange membrane water electrolysis(PEMWE),due to their excellent catalytic activity for acidic hydrogen evolution reaction(HER),but are greatly limited by their low reserves and high cost.Here,we report an interfacial engineering strategy to obtain a promising low-Pt loading catalyst with atomically Pt-doped molybdenum carbide quantum dots decorated on conductive porous carbon(Pt-MoCx@C)for high-rate and stable HER in PEMWE.Benefiting from the strong interfacial interaction between Pt atoms and the ultra-small MoCx quantum dots substrate,the Pt-MoCx catalyst exhibits a high mass activity of 8.00 A·mgPt−1,5.6 times higher than that of commercial 20 wt.%Pt/C catalyst.Moreover,the strong interfacial coupling of Pt and MoCx substrate greatly improves the HER stability of the Pt-MoCx catalyst.Density functional theory studies further confirm the strong metal-support interaction on Pt-MoCx,the critical role of MoCx substrate in the stabilization of surface Pt atoms,as well as activation of MoCx substrate by Pt atoms for improving HER durability and activity.The optimized Pt-MoCx@C catalyst demonstrates>2000 h stability under a water-splitting current of 1000 mA·cm^(−2)when applied to the cathode of a PEM water electrolyzer,suggesting the potential for practical applications.展开更多
The keeper and cast dowel-coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex micro...The keeper and cast dowel-coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex microflora and chewing behaviour and so on. The objective of this in vitro study was to examine the corrosion resistance of a dowel and coping-keeper complex fabricated by finish keeper and three alloys (cobalt-chromium, CoCr; silver-palladium-gold, PdAu; gold-platinum, AuPt) using a laser- welding process and a casting technique. The surface morphology characteristics and microstructures of the samples were examined by means of metallographic microscope and scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) with SEM provided elements analysis information for the test samples after 10% oxalic acid solution etching test. Tafel polarization curve recordings demonstrated parameter values indicating corrosion of the samples when subjected to electrochemical testing. This study has suggested that massive oxides are attached to the surface of the CoCr-keeper complex but not to the AuPt-keeper complex. Only the keeper area of cast CoCr-keeper complex displayed obvious intergranular corrosion and changes in the Fe and Co elements, Both cast and laser-welded AuPt-keeper complexes had the highest free corrosion potential, followed by the PdAu-keeper complex. We concluded that although the corrosion resistance of the CoCr-keeper complex was worst, the keeper surface passive film was actually preserved to its maximum extent. The laser-welded CoCr- and PdAu-keeper complexes possessed superior corrosion resistance as compared with their cast specimens, but no significant difference was found between the cast and laser-welded AuPt-keeper complexes. The Fe-poor and Cr-rich band, appearing on the edge of the keeper when casting, has been proven to be a corrosion-prone area.展开更多
Metal-organic frameworks(MOFs)with orderly porous structure,large surface area,high electrochemical response and chemical tunability have been widely studied for energy conversion and storage.However,most reported MOF...Metal-organic frameworks(MOFs)with orderly porous structure,large surface area,high electrochemical response and chemical tunability have been widely studied for energy conversion and storage.However,most reported MOFs still suffer from poor stability,insufficient conductivity,and low utilization of active sites.One strategy to circumvent these issues is to optimize MOFs via designing composites.Here,the design principle from the viewpoint of the intrinsic relationships among various components will be illuminated to acquire the synergistic effects,including two working modes:(1)MOFs with assistant components,(2)MOFs with other function components.This review introduces recent research progress of MOF-based composites with their typical applications in energy conversion(catalysis)and storage(supercapacitor and ion battery).Finally,the challenges and future prospects of MOF-based composites will be discussed in terms of maximizing composite properties.展开更多
Bohr’s principle of complementarity has a long history and it is an important topic in quantum theory,among which the famous example is the duality relation.The relation between visibilityC and distinguishability D,C...Bohr’s principle of complementarity has a long history and it is an important topic in quantum theory,among which the famous example is the duality relation.The relation between visibilityC and distinguishability D,C2+D2≤1,has long been recognized as the only representative of the duality relation.However,recent researches have shown that this inequality is not good enough because it is not tight for multipath interferometers.Meanwhile,a tight bound for the multipath interferometer has been put forward.Here we design and experimentally implement a three-path interferometer coupling with path indicator states.The wave property of photons is characterized by l1-norm coherence measure,and the particle property is based on distinguishability of the indicator states.The new duality relation of the three-path interferometer is demonstrated in our experiment,which bounds the union of a right triangle and a part of elliptical area inside the quadrant of a unit circle.Data analysis confirms that the new bound is tight for photons in three-path interferometers.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62105272 and 62305304)the Natural Science Foundation of Fujian Province,China(Grant Nos.2022J06016 and 2021J05016)+2 种基金the National Key Research and Development Program of China(Grant No.2021ZD0109904)the Key Research Project of Zhejiang Laboratory(Grant No.2022PH0AC03)the Fundamental Research Funds for the Central Universities(Grant No.20720220109).
文摘The increasing demand in spectroscopy and sensing calls for infrared(mid-IR)light sources.Here,we theoretically investigate nonlinear wavelength conversion of Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguide in the mid-IR spectral regime.With waveguide dispersion engineering,we predict generation of over an octave wavelength(2.8μm-5.9μm)tuning range Raman soliton self-frequency shift,over 2.5 octaves wavelength cover range supercontinuum(1.2μm-8.0μm),as well as single soliton Kerr comb generated in suspended Ge_(28)Sb_(12)Se_(60)waveguide.Our findings evidenced that Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguides can simultaneously satisfy the generation of Raman soliton self-frequency shift,supercontinuum spectrum,and Kerr frequency comb generation through dispersion engineering towards mid-IR on chip.
基金The research of YY is supported by the Research Grant Council(RGC)through the General Research Fund(GRF)with the grant number N_CityU 109/21,CityU11213118 and CityU11209317.
文摘Hydrogen production through hydrogen evolution reaction(HER)offers a promising solution to combat climate change by replacing fossil fuels with clean energy sources.However,the widespread adoption of efficient electrocatalysts,such as platinum(Pt),has been hindered by their high cost.In this study,we developed an easy-to-implement method to create ultrathin Pt nanomembranes,which catalyze HER at a cost significantly lower than commercial Pt/C and comparable to non-noble metal electrocatalysts.These Pt nanomembranes consist of highly distorted Pt nanocrystals and exhibit a heterogeneous elastic strain field,a characteristic rarely seen in conventional crystals.This unique feature results in significantly higher electrocatalytic efficiency than various forms of Pt electrocatalysts,including Pt/C,Pt foils,and numerous Pt singleatom or single-cluster catalysts.Our research offers a promising approach to develop highly efficient and cost-effective low-dimensional electrocatalysts for sustainable hydrogen production,potentially addressing the challenges posed by the climate crisis.
文摘After the outbreak of World War I,the British War Office decided to dispatch female nursing personnel to the front lines due to the severe casualties among soldiers,the underdeveloped military medical services of the allied forces,and the maturity of the British Army female nursing service.Despite the harsh working conditions and the complexities of nurse-patient relationships under wartime restrictions,the female nursing staff also experienced moments of leisure that allowed them to relax and recuperate.The wartime British Army Female Nursing Service had a positive effect in reducing casualties and promoting the development of the official nurse registration movement.
基金supported by the National Natural Science Foundation of China(52002366,22075263)the Fundamental Research Funds for the Central Universities(WK2060000039)+1 种基金support from the USTC Center for Micro-and Nanoscale Research and Fabricationthe supercomputing system in the Supercomputing Center of USTC for helpful discussions regarding the experimental design。
基金supported by the National Natural Science Fund(82004337)the Beijing University of Chinese Medicine new teacher launch fund(2020-JYB-XJSJJ-002)。
文摘Objective:To explore the mechanism of Huatan Sanjie Fang(HTSJ)in regulating goiter in Graves'disease(GD)mice by detecting key factors of the Hippo signaling pathway.Methods:A mouse model of GD was established by injecting Ad-TSHR289 adenovirus into the bilateral quadriceps femoris of female mice.Successful mouse models were then randomly divided into a model group,methimazole(MMI)group,and HTSJ group,and fed with deionized water,MMI(4.5 mg/kg per day),and HTSJ(35.10 g/kg per day),respectively,for 10 weeks.Histopathological changes of the thyroid gland were subsequently observed by hematoxylin-eosin staining.Radioimmunoassay was used to detect serum total thyroxine(T4)and thyrotrophin-receptor antibody(TRAb)levels.The relative expression of mRNA of Mst1,YAP,and TAZ were detected by quantitative real-time polymerase chain reaction,while the protein expression of Mst1,YAP,TAZ,pMst1,and pYAP were detected by western blot.Results:After 10 weeks of drug intervention,goiter and other pathological changes in the HTSJ group significantly improved compared with the model group,and the levels of serum T4 and TRAb significantly decreased(P=.002,P<.001,respectively).Decreased mRNA expression of Mst1,YAP,and TAZ,the key factors of the Hippo signaling transduction pathway,was also observed(P=.002,P=.022,P<.001,respectively).In contrast,protein expression of Mst1(P=.046),pMst1(P=.026),and p YAP(P=.004)increased,while protein expression of YAP and TAZ decreased(P=.041,P<.001,respectively).Conclusion:HTSJ can effectively improve goiter in GD mice through the Hippo signaling pathway.
基金the National Natural Science Foundation of China(52002366,22075263)the Fundamental Research Funds for the Central Universities(WK2060000039)+1 种基金the Natural Science Foundation of Higher Education Institutions of the Anhui Province(KJ2021A0132)the Key Research and Development Program of the Anhui Province(202104a05020070)for financial support.We are thankful for support from the USTC center for micro-and nanoscale research and fabrication,supercomputing system in the supercomputing center of the USTC.
文摘Metallic few-layered 1T phase vanadium disulfide nanosheets have been employed for boosting sodium ion batteries.It can deliver a capacity of 241 mAh∙g^(−1)at 100 mA∙g^(−1)after 200 cycles.Such long-term stability is attributed to the facile ion diffusion and electron transport resulting from the well-designed two-dimensional(2D)electron-electron correlations among V atoms in the 1T phase and optimized in-planar electric transport.Our results highlight the phase engineering into electrode design for energy storage.
基金supported by the National Natural Science Foundation of China (Grant No. 81870800)the Science and Technology Department of Sichuan Province (Grant No. 2015JY0146)
文摘Inflammatory orofacial pain,in which substance P (SP) plays an important role,is closely related to the cross-talk between trigeminal ganglion (TG) neurons and satellite glial cells (SGCs).SGC activation is emerging as the key mechanism underlying inflammatory pain through different signalling mechanisms,including glial fibrillary acidic protein (GFAP) activation,phosphorylation of mitogen-activated protein kinase (MAPK) signalling pathways,and cytokine upregulation.However,in the TG,the mechanism underlying SP-mediated orofacial pain generated by SGCs is largely unknown.In this study,we investigated whether SP is involved in inflammatory orofacial pain by upregulating interleukin (IL)-1β and tumour necrosis factor (TNF)-α from SGCs,and we explored whether MAPK signalling pathways mediate the pain process.In the present study,complete Freund’s adjuvant (CFA) was injected into the whisker pad of rats to induce an inflammatory model in vivo.SP was administered to SGC cultures in vitro to confirm the effect of SP.Facial expression analysis showed that pre-injection of L703,606 (an NK-1 receptor antagonist),U0126 (an inhibitor of MAPK/extracellular signal-regulated kinase [ERK] kinase [MEK] 1/2),and SB203580 (an inhibitor of P38) into the TG to induce targeted prevention of the activation of the NK-1 receptor and the phosphorylation of MAPKs significantly suppressed CFA-induced inflammatory allodynia.In addition,SP promoted SGC activation,which was proven by increased GFAP,p-MAPKs,IL-1β and TNF-α in SGCs under inflammatory conditions.Moreover,the increase in IL-1β and TNF-α was suppressed by L703,606,U0126 and SB203580 in vivo and in vitro.These present findings suggested that SP,released from TG neurons,activated SGCs through the ERK1/2 and P38 pathways and promoted the production of IL-1β and TNF-α from SGCs,contributing to inflammatory orofacial pain associated with peripheral sensitization.
基金the National Natural Science Foundation of China(51974082)the National Natural Science Foundation of China(51771043)the Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project 2.0 of China,No.BP0719037).
文摘A comprehensive two-dimensional axisymmetric mathematical model that couples transient electromagnetic force with fluid flow,heat transfer,and solidification was established to describe the interaction of multiphysics field during DC casting.The melt flow,heat transfer,and solidification characteristics under differential phase pulse magnetic field and differential phase low-frequency electromagnetic field(DP-PMF and DP-LFEF)were numerically investigated by means of numerical simulation during electromagnetic direct-chill(DC)casting of AZ31 alloy at the same casting conditions.The effects of differential phase electromagnetic fields on Lorentz forces distributions,melt flow,heat transfer,and liquid sump shape were discussed systematically.Based on measured current waveform,the results were compared with those obtained without magnetic field(MF)and under conventional pulse magnetic field(PMF)and low-frequency electromagnetic field(LFEF)under the same conditions.The results show that the application of magnetic fields can significantly change the solidification process of DC casting.Differential phase magnetic fields(DP-LFEF and DP-PMF)can effectively reduce the temperature of the melt in the liquid sump,and the shallower liquid sump depth can be obtained under the differential phase magnetic fields.A large velocity vibration amplitude and a lower temperature are available simultaneously under DP-PMF,resulting in more uniform temperature distribution.
基金supported by the Natural Science Foundation of Beijing Municipality Surface Project(7192114)。
文摘Objective: To reveal the mechanism of Mahuang Lianqiao Chixiaodou decoction and its disassembled formula for improving the skin barrier function in a mouse model of atopic dermatitis(AD).Methods: Sixty specific-pathogen free male BALB/c mice were randomly divided into the control group,model group, whole formula group(WF), exterior-releasing formula group(ERF), interior-clearing formula group(ICF), and positive control group(PC). A mouse model of AD was established using the semiantigen 2,4-dinitrofluorobenzene induction method. The lesion scores, transepidermal water loss and p H, and skin histopathology of mice in each group were observed. The expressions of filaggrin, loricrin,and involucrin were detected by the streptavidin peroxidase immunohistochemical method and western blotting, and their mRNA expressions were detected by quantitative polymerase chain reaction.Results: Mice in the WF, ERF, ICF, and PC groups showed reduced skin lesion performance, improved histopathology, decreased skin lesion score, transepidermal water loss and pH, and upregulated expressions of proteins including filaggrin, loricrin, and involucrin, and their mRNAs. The most obvious regulatory effect was observed in the WF group, followed by the ICF, ERF, and PC groups, accordingly.Conclusions: Mahuang Lianqiao Chixiaodou decoction and its disassembled formula can improve the skin barrier function in a mouse model of AD by upregulating filaggrin, loricrin, and involucrin, and their mRNA expressions, and the most optimal effect was noted in the WF group, followed by the ICF and ERF groups, which suggests that the effect of clearing heat and resolving dampness in improving the skin barrier function of AD is more obvious and is one of the key treatments for AD.
基金Support for this research was provided by the National Key R&D Program of China(grant numbers 2018YFC1504203 and SQ2017YFSF040025)
文摘Seismic hazard analysis is gaining increased attention in the present era because of the catastrophic effects of earthquakes.Scientists always have as a goal to develop new techniques that will help forecast earthquakes before their reoccurrence. In this research,we have performed a shear failure experiment on rock samples with prefabricated cracks to simulate the process of plate movement that forms strike-slip faults. We studied the evolution law of the deformation field to simulate the shear failure experiment, and these results gave us a comprehensive understanding of the elaborate strain distribution law and its formation process with which to identify actual fault zones. We performed uniaxial compression tests on marble slabs with prefabricated double shear cracks to study the distribution and evolution of the deformation field during shear failure. Analysis of the strain field at different loading stages showed that with an increase in the load, the shear strain field initially changed to a disordered-style distribution. Further, the strain field was partially concentrated and finally completely concentrated near the crack and then distributed in the shape of a strip along the crack. We also computed coefficients of variation(CVs) for the physical quantities u, v, and exy, which varied with the load. The CV curves were found to correspond to the different loading stages. We found that at the uniform deformation stage, the CV value was small and changed slowly,whereas at the later nonuniform deformation stage, the CV value increased sharply and changed abruptly. Therefore, the precursor to a rock sample breakdown can be predicted by observing the variation characteristics of CV statistics. The correlation we found between our experimental and theoretical results revealed that our crack evolution and sample deformation results showed good coupling with seismic distribution characteristics near the San Andreas Fault.
基金the National Key Research and Development Program of China(Grant No.2016YFA0302700)the National Natural Science Foundation of China(Grant Nos.11674304,11822408,11774335,61490711,11474267,11821404,and 91321313)+3 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2017492)the Foundation for Scientific Instrument and Equipment Development of Chinese Academy of Sciences(Grant No.YJKYYQ20170032)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDY-SSW-SLH003)the Fundamental Research Funds for the Central Universities,China(Grant No.WK2470000026)。
文摘Entanglement is the key resource in quantum information processing,and an entanglement witness(EW)is designed to detect whether a quantum system has any entanglement.However,prior knowledge of the target states should be known first to design a suitable EW,which weakens this method.Nevertheless,a recent theory shows that it is possible to design a universal entanglement witness(UEW)to detect negative-partial-transpose(NPT)entanglement in unknown bipartite states with measurement-device-independent(MDI)characteristic.The outcome of a UEW can also be upgraded to be an entanglement measure.In this study,we experimentally design and realize an MDI UEW for two-qubit entangled states.All of the tested states are well-detected without any prior knowledge.We also show that it is able to quantify entanglement by comparing it with concurrence estimated through state tomography.The relation between them is also revealed.The entire experimental framework ensures that the UEW is MDI.
基金the National Natural Science Foundation of China,No.81670600.
文摘BACKGROUND Ischemia-reperfusion injury(IRI) is a major risk associated with liver surgery and transplantation,and its pathological mechanism is complex.Interleukin-1 receptor antagonist(IL-1ra) can protect the liver from IRI.However,the regulatory mechanism of IL-1ra expression is still unclear.AIM To identify the mechanism that could protect the liver in the early stage of IRI.METHODS To screen the key genes in hepatic IRI,we performed RNA sequencing and gene enrichment analysis on liver tissue from mice with hepatic IRI.Subsequently,we verified the expression and effect of IL-1ra in hepatic IRI.We also used promoter mutagenesis and chromatin immunoprecipitation assay to search for the transcriptional regulatory sites of hypoxia-inducible factor(HIF)-1α.Finally,to explore the protective mechanism of ischemic preconditioning(IP),we examined the expression of HIF-1α and IL-1ra after IP.RESULTS We identified IL-1ra as a key regulator in hepatic IRI.The expression of IL-1ra was significantly upregulated after hepatic IRI both in vivo and in vitro.Furthermore,we found that HIF-1αregulated Il-1ra transcription in response to hypoxia.Increased HIF-1α accumulation promoted IL-1ra expression,whereas inhibition of HIF-1α exhibited the opposite effect.We also confirmed a predominant role for hypoxia response element in the regulation of Il1ra transcription by HIF-1αactivation.Of note,we demonstrated that IP protects against hepatic IRI by inducing IL-1ra expression,which is mediated through HIF-1α.CONCLUSION We demonstrated that ischemia or hypoxia leads to increased expression of IL-1ra through HIF-1α.Importantly,IP protects the liver from IRI via the HIF-1α–IL-1ra pathway.
基金supported by the National Science Foundation of China (Grant No. 81000456)the Science and Technology Department of Sichuan Province (Grant No. 2009SZ0171)
文摘Chlorogenic acid(5-caffeoylquinic acid, CGA) is a phenolic compound that is found ubiquitously in plants, fruits and vegetables and is formed via the esterification of caffeic acid and quinic acid. In addition to its notable biological functions against cardiovascular diseases, type-2 diabetes and inflammatory conditions, CGA was recently hypothesized to be an alternative for the treatment of neurological diseases such as Alzheimer's disease and neuropathic pain disorders. However, its mechanism of action is unclear.Voltage-gated potassium channel(Kv) is a crucial factor in the electro-physiological processes of sensory neurons. Kv has also been identified as a potential therapeutic target for inflammation and neuropathic pain disorders. In this study, we analysed the effects of CGA on the two main subtypes of Kv in trigeminal ganglion neurons, namely, the IK,Aand IK,Vchannels. Trigeminal ganglion(TRG)neurons were acutely disassociated from the rat TRG, and two different doses of CGA(0.2 and 1 mmol·L21) were applied to the cells.Whole-cell patch-clamp recordings were performed to observe alterations in the activation and inactivation properties of the IK,Aand IK,Vchannels. The results demonstrated that 0.2 mmol·L21CGA decreased the peak current density of IK,A. Both 0.2 mmol·L21and1 mmol·L21CGA also caused a significant reduction in the activation and inactivation thresholds of IK,Aand IK,V. CGA exhibited a strong effect on the activation and inactivation velocities of IK,Aand IK,V. These findings provide novel evidence explaining the biological effects of CGA, especially regarding its neurological effects.
基金the National Natural Science Foundation of China(Nos.22171287,21901136,51972342,51972345,22105226,and 51872056)Taishan Scholar Project of Shandong Province(Nos.tsqn202103046 and ts20190922)+3 种基金Natural Science Foundation of Shandong Province(Nos.ZR2022QE175 and ZR2019ZD51)Fundamental Research Funds for the Central Universities(Nos.20CX06024A,22CX01002A-1,and 21CX06002A)China Postdoctoral Science Foundation(Nos.2019M650027 and 2019TQ0169)National Natural Science Foundation of Beijing(No.2204082),and Shandong Province Postdoctoral Innovative Talent Support Program(No.SDBX20200004).
文摘Platinum(Pt)-based electrocatalysts remain the only practical cathode catalysts for proton exchange membrane water electrolysis(PEMWE),due to their excellent catalytic activity for acidic hydrogen evolution reaction(HER),but are greatly limited by their low reserves and high cost.Here,we report an interfacial engineering strategy to obtain a promising low-Pt loading catalyst with atomically Pt-doped molybdenum carbide quantum dots decorated on conductive porous carbon(Pt-MoCx@C)for high-rate and stable HER in PEMWE.Benefiting from the strong interfacial interaction between Pt atoms and the ultra-small MoCx quantum dots substrate,the Pt-MoCx catalyst exhibits a high mass activity of 8.00 A·mgPt−1,5.6 times higher than that of commercial 20 wt.%Pt/C catalyst.Moreover,the strong interfacial coupling of Pt and MoCx substrate greatly improves the HER stability of the Pt-MoCx catalyst.Density functional theory studies further confirm the strong metal-support interaction on Pt-MoCx,the critical role of MoCx substrate in the stabilization of surface Pt atoms,as well as activation of MoCx substrate by Pt atoms for improving HER durability and activity.The optimized Pt-MoCx@C catalyst demonstrates>2000 h stability under a water-splitting current of 1000 mA·cm^(−2)when applied to the cathode of a PEM water electrolyzer,suggesting the potential for practical applications.
基金funded by the National Natural Science Foundation of China (Grant No. 81000456)the Science and Technology Department of Sichuan Province (Grant No. 2015JY0146)the Science and Technology Bureau of Chengdu (Grant No. 2014-HM01-00203-SF)
文摘The keeper and cast dowel-coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex microflora and chewing behaviour and so on. The objective of this in vitro study was to examine the corrosion resistance of a dowel and coping-keeper complex fabricated by finish keeper and three alloys (cobalt-chromium, CoCr; silver-palladium-gold, PdAu; gold-platinum, AuPt) using a laser- welding process and a casting technique. The surface morphology characteristics and microstructures of the samples were examined by means of metallographic microscope and scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) with SEM provided elements analysis information for the test samples after 10% oxalic acid solution etching test. Tafel polarization curve recordings demonstrated parameter values indicating corrosion of the samples when subjected to electrochemical testing. This study has suggested that massive oxides are attached to the surface of the CoCr-keeper complex but not to the AuPt-keeper complex. Only the keeper area of cast CoCr-keeper complex displayed obvious intergranular corrosion and changes in the Fe and Co elements, Both cast and laser-welded AuPt-keeper complexes had the highest free corrosion potential, followed by the PdAu-keeper complex. We concluded that although the corrosion resistance of the CoCr-keeper complex was worst, the keeper surface passive film was actually preserved to its maximum extent. The laser-welded CoCr- and PdAu-keeper complexes possessed superior corrosion resistance as compared with their cast specimens, but no significant difference was found between the cast and laser-welded AuPt-keeper complexes. The Fe-poor and Cr-rich band, appearing on the edge of the keeper when casting, has been proven to be a corrosion-prone area.
基金the National Natural Science Foundation of China(NNSFC grants 21707093).
文摘Metal-organic frameworks(MOFs)with orderly porous structure,large surface area,high electrochemical response and chemical tunability have been widely studied for energy conversion and storage.However,most reported MOFs still suffer from poor stability,insufficient conductivity,and low utilization of active sites.One strategy to circumvent these issues is to optimize MOFs via designing composites.Here,the design principle from the viewpoint of the intrinsic relationships among various components will be illuminated to acquire the synergistic effects,including two working modes:(1)MOFs with assistant components,(2)MOFs with other function components.This review introduces recent research progress of MOF-based composites with their typical applications in energy conversion(catalysis)and storage(supercapacitor and ion battery).Finally,the challenges and future prospects of MOF-based composites will be discussed in terms of maximizing composite properties.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0302700 and 2017YFA0304100)the National Natural Science Foundation of China(Grant Nos.11822408,11674304,11774335,61490711,11474267,11821404,11325419,11904356,and 91321313)+5 种基金the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2017492)the Foundation for Scientific Instrument and Equipment Development,Chinese Academy of Sciences(Grant No.YJKYYQ20170032)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDY-SSW-SLH003),the Fundamental Research Funds for the Central Universities,China(Grant Nos.WK2470000026 and WK2030000008)Science Foundation of Chinese Academy of Sciences(Grant No.ZDRW-XH-2019-1),Anhui Initiative in Quantum Information Technologies,China(Grant Nos.AHY020100,AHYPT003,and AHY060300)the National Postdoctoral Program for Innovative Talents of China(Grant No.BX20180293)the China Postdoctoral Science Foundation(Grant No.2018M640587).
文摘Bohr’s principle of complementarity has a long history and it is an important topic in quantum theory,among which the famous example is the duality relation.The relation between visibilityC and distinguishability D,C2+D2≤1,has long been recognized as the only representative of the duality relation.However,recent researches have shown that this inequality is not good enough because it is not tight for multipath interferometers.Meanwhile,a tight bound for the multipath interferometer has been put forward.Here we design and experimentally implement a three-path interferometer coupling with path indicator states.The wave property of photons is characterized by l1-norm coherence measure,and the particle property is based on distinguishability of the indicator states.The new duality relation of the three-path interferometer is demonstrated in our experiment,which bounds the union of a right triangle and a part of elliptical area inside the quadrant of a unit circle.Data analysis confirms that the new bound is tight for photons in three-path interferometers.