Nonlinear optical imaging is a versatile tool that has been proven to be exceptionally useful in various research fields.However,due to the use of photomultiplier tubes(PMTs),the wide application of nonlinear optical ...Nonlinear optical imaging is a versatile tool that has been proven to be exceptionally useful in various research fields.However,due to the use of photomultiplier tubes(PMTs),the wide application of nonlinear optical imaging is limited by the incapability of imaging under am-bient light.In this paper,we propose and demonstrate a new optical imaging detection method based on optical parametric amplification(OPA).As a nonlinear optical process,OPA in-trinsically rejects ambient light photons by coherence gating.Periodical poled lithium niobate(PPLN)crystals are used in this study as the media for OPA.Compared to bulk nonlinear optical crystals,PPLN crystals support the generation of OPA signal with lower pump power.Therefore,this characteristic of PPLN crystals is particularly beneficial when using high-repetition-rate lasers,which facilitate high-speed optical signal detection,such as in spec-troscopy and imaging.A PPLN-based OPA system was built to amplify the emitted imaging signal from second harmonic generation(SHG)and coherent anti-Stokes Raman scattering(CARS)microscopy imaging,and the amplified optical signal was strong enough to be detected by a biased photodiode under ordinary room light conditions.With OPA detection,ambient-light-on SHG and CARS imaging becomes possible,and achieves a similar result as PMT detection under strictly dark environments.These results demonstrate that OPA can be used as a substitute for PMTs in nonlinear optical imaging to adapt it to various applications with complex.light ing conditions.展开更多
The emission wavelength of a laser is physically predetermined by the gain medium used. Consequently, arbitrary wavelength generation is a fundamental challenge in the science of light. Present solutions include optic...The emission wavelength of a laser is physically predetermined by the gain medium used. Consequently, arbitrary wavelength generation is a fundamental challenge in the science of light. Present solutions include optical parametric generation, requiring complex optical setups and spectrally sliced supercontinuum, taking advantage of a simpler fiber technology: a fixed-wavelength pump laser pulse is converted into a spectrally very broadband output, from which the required resulting wavelength is then optically filtered. Unfortunately, this process is associated with an inherently poor noise figure, which often precludes many realistic applications of such supercontinuum sources. Here, we show that by adding only one passive optical element—a tapered photonic crystal fiber—to a fixed-wavelength femtosecond laser, one can in a very simple manner resonantly convert the laser emission wavelength into an ultra-wide and continuous range of desired wavelengths, with very low inherent noise, and without mechanical realignment of the laser. This is achieved by exploiting the double interplay of nonlinearity and chirp in the laser source and chirp and phase matching in the tapered fiber. As a first demonstration of this simple and inexpensive technology, we present a femtosecond fiber laser continuously tunable across the entire red–green–blue spectral range.展开更多
基金supported in part by grants from the National Institutes of Health (R01CA213149,R01CA241618).
文摘Nonlinear optical imaging is a versatile tool that has been proven to be exceptionally useful in various research fields.However,due to the use of photomultiplier tubes(PMTs),the wide application of nonlinear optical imaging is limited by the incapability of imaging under am-bient light.In this paper,we propose and demonstrate a new optical imaging detection method based on optical parametric amplification(OPA).As a nonlinear optical process,OPA in-trinsically rejects ambient light photons by coherence gating.Periodical poled lithium niobate(PPLN)crystals are used in this study as the media for OPA.Compared to bulk nonlinear optical crystals,PPLN crystals support the generation of OPA signal with lower pump power.Therefore,this characteristic of PPLN crystals is particularly beneficial when using high-repetition-rate lasers,which facilitate high-speed optical signal detection,such as in spec-troscopy and imaging.A PPLN-based OPA system was built to amplify the emitted imaging signal from second harmonic generation(SHG)and coherent anti-Stokes Raman scattering(CARS)microscopy imaging,and the amplified optical signal was strong enough to be detected by a biased photodiode under ordinary room light conditions.With OPA detection,ambient-light-on SHG and CARS imaging becomes possible,and achieves a similar result as PMT detection under strictly dark environments.These results demonstrate that OPA can be used as a substitute for PMTs in nonlinear optical imaging to adapt it to various applications with complex.light ing conditions.
基金Teknologi og Produktion,Det Frie Forskningsrad(FTP,DFF)(ALFIE)Research Executive Agency(REA)(EU Career Integration Grant 334324LIGHTER)+2 种基金H2020 European Research Council(ERC)(ERC-617521 NLL)National Cancer Institute(NCI)(1 R01 CA166309)Max-Planck-Gesellschaft(MPG)
文摘The emission wavelength of a laser is physically predetermined by the gain medium used. Consequently, arbitrary wavelength generation is a fundamental challenge in the science of light. Present solutions include optical parametric generation, requiring complex optical setups and spectrally sliced supercontinuum, taking advantage of a simpler fiber technology: a fixed-wavelength pump laser pulse is converted into a spectrally very broadband output, from which the required resulting wavelength is then optically filtered. Unfortunately, this process is associated with an inherently poor noise figure, which often precludes many realistic applications of such supercontinuum sources. Here, we show that by adding only one passive optical element—a tapered photonic crystal fiber—to a fixed-wavelength femtosecond laser, one can in a very simple manner resonantly convert the laser emission wavelength into an ultra-wide and continuous range of desired wavelengths, with very low inherent noise, and without mechanical realignment of the laser. This is achieved by exploiting the double interplay of nonlinearity and chirp in the laser source and chirp and phase matching in the tapered fiber. As a first demonstration of this simple and inexpensive technology, we present a femtosecond fiber laser continuously tunable across the entire red–green–blue spectral range.