Background Cartilage injury has a very poor capacity for intrinsic regeneration. The cell-based treatment strategy for the cartilage repair using differentiated bone marrow mesenchymal stem cells (BMSCs) is, however...Background Cartilage injury has a very poor capacity for intrinsic regeneration. The cell-based treatment strategy for the cartilage repair using differentiated bone marrow mesenchymal stem cells (BMSCs) is, however, a promising approach to the chondral repair. This study was aimed to explore the chondrogenic potential of the goat BMSCs in the Transwell co-culture system and the poly-laetide-co-glycolide (PLGA) scaffolds.Methods The BMSCs were isolated from the goat iliac crest while the chondrocytes were obtained from the goat's last costal cartilage. In the Transwell co-culture system, the BMSCs co-cultured with chondrocytes were designed as group A,whereas the goat's BMSCs induced with the chondrogenic medium were group B. Both groups A and B were the experimental groups, while group C that only contained BMSCs was the control group. In the PLGA scaffolds co-culture system, BMSCs were seeded into the PLGA scaffolds, which were suspended in the 24-well plate, and the control group was established by presence or absence of chondrocytes at the bottom of the 24-well plate. Toluidine blue staining,Alcian blue staining, collagen Ⅱ immunofluoresence, collagen Ⅱ immunochemical staining, collagen Ⅰ, collagen Ⅱ, COL2a Q-PCR and osteopontin Q-PCR were used to examine the chondrogenic conditions as well as the expressions of chondrogenic and osteogenic genes.Results Cells isolated from the aspirates of the goat bone marrow proliferated rapidly and gained characteristics of stem cells in Passage 4. However, the differentiations of chondrocytes were not apparent in Passage 3. The results from Toluidine blue staining, collagen Ⅱ immunofluoresence and PCR showed the transformation of BMSCs to chondrocytes in the Transwell co-culture system and PLGA scaffolds. Although the cartilage gene expressions were upgraded in both chondrogenesis group and co-culture system, the osteopontin gene expression, which represents osteogenic level, was also up-regulated.Conclusions The Transwell co-culture system and the PLGA scaffolds co-culture system can promote the chondrogenic differentiation of the goat's BMSCs, while up-regulated osteopontin gene expression in the Transwell co-culture system implies the osteogenic potential of BMSCs.展开更多
文摘Background Cartilage injury has a very poor capacity for intrinsic regeneration. The cell-based treatment strategy for the cartilage repair using differentiated bone marrow mesenchymal stem cells (BMSCs) is, however, a promising approach to the chondral repair. This study was aimed to explore the chondrogenic potential of the goat BMSCs in the Transwell co-culture system and the poly-laetide-co-glycolide (PLGA) scaffolds.Methods The BMSCs were isolated from the goat iliac crest while the chondrocytes were obtained from the goat's last costal cartilage. In the Transwell co-culture system, the BMSCs co-cultured with chondrocytes were designed as group A,whereas the goat's BMSCs induced with the chondrogenic medium were group B. Both groups A and B were the experimental groups, while group C that only contained BMSCs was the control group. In the PLGA scaffolds co-culture system, BMSCs were seeded into the PLGA scaffolds, which were suspended in the 24-well plate, and the control group was established by presence or absence of chondrocytes at the bottom of the 24-well plate. Toluidine blue staining,Alcian blue staining, collagen Ⅱ immunofluoresence, collagen Ⅱ immunochemical staining, collagen Ⅰ, collagen Ⅱ, COL2a Q-PCR and osteopontin Q-PCR were used to examine the chondrogenic conditions as well as the expressions of chondrogenic and osteogenic genes.Results Cells isolated from the aspirates of the goat bone marrow proliferated rapidly and gained characteristics of stem cells in Passage 4. However, the differentiations of chondrocytes were not apparent in Passage 3. The results from Toluidine blue staining, collagen Ⅱ immunofluoresence and PCR showed the transformation of BMSCs to chondrocytes in the Transwell co-culture system and PLGA scaffolds. Although the cartilage gene expressions were upgraded in both chondrogenesis group and co-culture system, the osteopontin gene expression, which represents osteogenic level, was also up-regulated.Conclusions The Transwell co-culture system and the PLGA scaffolds co-culture system can promote the chondrogenic differentiation of the goat's BMSCs, while up-regulated osteopontin gene expression in the Transwell co-culture system implies the osteogenic potential of BMSCs.