为了解决铁路移动通信网络规划成本高且效率低的问题,满足铁路智能无线网络建设需求,以京沈客运专线为场景,研究了2.1 GHz频段下基于高性能射线跟踪的5G铁路专用移动通信(5G for railway, 5GR)智能无线网络规划技术.依托参考信号接收功...为了解决铁路移动通信网络规划成本高且效率低的问题,满足铁路智能无线网络建设需求,以京沈客运专线为场景,研究了2.1 GHz频段下基于高性能射线跟踪的5G铁路专用移动通信(5G for railway, 5GR)智能无线网络规划技术.依托参考信号接收功率(reference signal receiving power, RSRP)高性能射线跟踪仿真得到电磁波在特定环境下传播时的信道特性和路径损耗,进而精准预算无线链路的RSRP和下行传输速率;同时将规划问题建模为多目标优化求解问题,使用遗传算法对基站参数进行分级规划,在RSRP覆盖达标的前提下,最大化下行传输速率,智能输出基站工参最优解.仿真结果表明该技术可以满足RSRP覆盖率和最大化下行传输速率的规划目标,为后续实现精准高效的5G-R无线网络规划和优化提供仿真支撑和参考.展开更多
为推进智能铁路总体建设,助力铁路数字化转型,基于5G的铁路专用移动通信系统(5G for Railway,5G-R)成为铁路智能联接的首选.作为最具发展潜力的B5G关键技术之一,智能超表面(Reconfigurable Intelligent Surface,RIS)具有复杂度低、成本...为推进智能铁路总体建设,助力铁路数字化转型,基于5G的铁路专用移动通信系统(5G for Railway,5G-R)成为铁路智能联接的首选.作为最具发展潜力的B5G关键技术之一,智能超表面(Reconfigurable Intelligent Surface,RIS)具有复杂度低、成本低和易于部署等优点,为5G智能高铁(High-Speed Railway,HSR)通信的发展提供了新契机.采用射线跟踪技术,精准刻画了2.1GHz频段下高铁高架桥场景的电波传播特性.基于准确的电波传播特性,利用发射机、反射面和接收机三者之间的角度关系,对RIS的部署位置和波束指向进行了设计.在获得RIS辅助下的信道传递函数后,对部署RIS前后的多维度信道特性进行了比较和研究.结果表明:引入RIS能够提升信号覆盖质量,加剧多径信号在时间域和空间域的色散程度,降低2T2R信道间的相关性,从而提高信道容量.本文研究成果可为高铁通信场景下5G-R系统与RIS的联合设计、优化提供理论指导和数据支撑.展开更多
In the vision of"smart rail mobility",a seamless high-data-rate wireless connectivity with up to dozens of GHz bandwidth will be required.This forms a strong motivation for exploring the underutilized millim...In the vision of"smart rail mobility",a seamless high-data-rate wireless connectivity with up to dozens of GHz bandwidth will be required.This forms a strong motivation for exploring the underutilized millimeter wave(mmWave)and Terahertz(THz)bands.In this paper,we identify the main challenges and present the state-of-the-art solutions towards the realization of smart rail mobility.In order to cope with the challenge of involving the railway features in the channel models,we define and reconstruct the complete version and the concise version of the reference scenario modules for mmWave and THz railway channels.Simulations in the complete version of the scenarios reflect the influence of railway objects in detail;based on raytracing simulations in the concise version of the scenarios,two mmWave railway channel models are established and validated by measurements.Moreover,in order to tackle the challenge of heavy computing workload,we develop an open-access high performance ray-tracing platform—CloudRT.Last but not least,the challenges raised by the mmWave directional network under high mobility are overcome by our solutions concerning the handover scheme,random access procedure,and beamforming strategies.By integrating the key enabling technologies presented in this paper,we prototype the mobile hotspot network(MHN)system which realizes 1.25 Gbps downlink data throughput in a subway line with the train speed of 80 km/h.Future directions towards the full version of the smart rail mobility are pointed out as well.展开更多
文摘为了解决铁路移动通信网络规划成本高且效率低的问题,满足铁路智能无线网络建设需求,以京沈客运专线为场景,研究了2.1 GHz频段下基于高性能射线跟踪的5G铁路专用移动通信(5G for railway, 5GR)智能无线网络规划技术.依托参考信号接收功率(reference signal receiving power, RSRP)高性能射线跟踪仿真得到电磁波在特定环境下传播时的信道特性和路径损耗,进而精准预算无线链路的RSRP和下行传输速率;同时将规划问题建模为多目标优化求解问题,使用遗传算法对基站参数进行分级规划,在RSRP覆盖达标的前提下,最大化下行传输速率,智能输出基站工参最优解.仿真结果表明该技术可以满足RSRP覆盖率和最大化下行传输速率的规划目标,为后续实现精准高效的5G-R无线网络规划和优化提供仿真支撑和参考.
基金supported by the National Natural Science Foundation of China(Grant Nos.61771036,U1834210,61901029,and 61725101).
文摘In the vision of"smart rail mobility",a seamless high-data-rate wireless connectivity with up to dozens of GHz bandwidth will be required.This forms a strong motivation for exploring the underutilized millimeter wave(mmWave)and Terahertz(THz)bands.In this paper,we identify the main challenges and present the state-of-the-art solutions towards the realization of smart rail mobility.In order to cope with the challenge of involving the railway features in the channel models,we define and reconstruct the complete version and the concise version of the reference scenario modules for mmWave and THz railway channels.Simulations in the complete version of the scenarios reflect the influence of railway objects in detail;based on raytracing simulations in the concise version of the scenarios,two mmWave railway channel models are established and validated by measurements.Moreover,in order to tackle the challenge of heavy computing workload,we develop an open-access high performance ray-tracing platform—CloudRT.Last but not least,the challenges raised by the mmWave directional network under high mobility are overcome by our solutions concerning the handover scheme,random access procedure,and beamforming strategies.By integrating the key enabling technologies presented in this paper,we prototype the mobile hotspot network(MHN)system which realizes 1.25 Gbps downlink data throughput in a subway line with the train speed of 80 km/h.Future directions towards the full version of the smart rail mobility are pointed out as well.