Aluminum(Al) toxicity usually occurs in acidic soils worldwide, which is detrimental to the growth of organisms. An Al-tolerant bacterium, SB1, was isolated from an acidic red soil of Chingkang Mountain, located in Ji...Aluminum(Al) toxicity usually occurs in acidic soils worldwide, which is detrimental to the growth of organisms. An Al-tolerant bacterium, SB1, was isolated from an acidic red soil of Chingkang Mountain, located in Jiangxi Province of China. Polyphasic analysis,including a 16 S rDNA phylogenetic tree as well as morphological and physicochemical properties, revealed that the isolate was a gramnegative, rod-shaped bacterium, which was recognized as Burkholderia sp. SB1 and had extreme acidity tolerance(pH 2.2) and excellent Al resistance(270 mg L^(-1) Al^(3+)). It could remove Al by up to 97.7% at a concentration of 54 mg L^(-1) Al^(3+). SB1 behavior under different temperatures and antibiotics was also examined. SB1 preferred moderate temperature conditions, ranging from 25 to37?C, and exhibited notable resistance to multiple antibiotics(including ampicillin, streptomycin, and tetracycline), except for being sensitive to chloramphenicol. Therefore, as the first reported bacterium to possess favorable Al resistance and excellent Al removal,Burkholderia sp. SB1 can potentially be used as an agent for bioremediation of Al-contaminated acidic red soils.展开更多
基金supported by the National Natural Science Foundation of China (No. 41462008) the Ph.D. Research Startup Foundation of Jinggangshan University, China (No. JZB1307)
文摘Aluminum(Al) toxicity usually occurs in acidic soils worldwide, which is detrimental to the growth of organisms. An Al-tolerant bacterium, SB1, was isolated from an acidic red soil of Chingkang Mountain, located in Jiangxi Province of China. Polyphasic analysis,including a 16 S rDNA phylogenetic tree as well as morphological and physicochemical properties, revealed that the isolate was a gramnegative, rod-shaped bacterium, which was recognized as Burkholderia sp. SB1 and had extreme acidity tolerance(pH 2.2) and excellent Al resistance(270 mg L^(-1) Al^(3+)). It could remove Al by up to 97.7% at a concentration of 54 mg L^(-1) Al^(3+). SB1 behavior under different temperatures and antibiotics was also examined. SB1 preferred moderate temperature conditions, ranging from 25 to37?C, and exhibited notable resistance to multiple antibiotics(including ampicillin, streptomycin, and tetracycline), except for being sensitive to chloramphenicol. Therefore, as the first reported bacterium to possess favorable Al resistance and excellent Al removal,Burkholderia sp. SB1 can potentially be used as an agent for bioremediation of Al-contaminated acidic red soils.