Fermentation of Phaffia rhodozyma is a major method for producing astaxanthin, an important pigment with industrial and pharmaceutical application. To improve astaxanthin productivity, single factor and mixture design...Fermentation of Phaffia rhodozyma is a major method for producing astaxanthin, an important pigment with industrial and pharmaceutical application. To improve astaxanthin productivity, single factor and mixture design experiments were used to investigate the effects of nitrogen source on Phaffia rhodozyma cultivation and astaxanthin production. Results of single factor experiments showed nitrogen source could significantly affect P. rhodozyma cultivation with respect to carbon source utilization, yeast growth and astaxanthin accumulation. Further studies of mixture design experiments using (NH4)2SO4, KNO3 and beef extract as nitrogen sources indicated that the proportion of three nitrogen sources was very important to astaxanthin production. Validation experiments showed that the optimal nitrogen source was composed of 0.28 g/L (NH4)2SO4, 0.49 g/L KNO3 and 1.19 g/L beef extract. The kinetic characteristics of batch cultivation were investigated in a 5-L pH-stat fermentor. The maximum amount of biomass and highest astaxanthin yield in terms of volume and in terms of biomass were 7.71 mg/L and 1.00 mg/g, respectively.展开更多
In order to improve the thermostability of β- 1,3-1,4-glucanase, evolutionary molecular engineering was used to evolve the β-1,3-1,4-glucanase from Bacillus subtilis ZJF-1A5. The process involves random mutation by ...In order to improve the thermostability of β- 1,3-1,4-glucanase, evolutionary molecular engineering was used to evolve the β-1,3-1,4-glucanase from Bacillus subtilis ZJF-1A5. The process involves random mutation by error-prone PCR and DNA shuffling followed by screening on the filter-based assay. Two mutants, EGsl and EGs2, were found to have four and five amino acid substitutions, respectively. These substitutions resulted in an increase in melting temperature from Tm=62.5℃ for the wild-type enzyme to Tm=65.5℃ for the mutant EGsl and 67.5℃ for the mutant EGs2. However, the two mutated enzymes had opposite approaches to produce reducing sugar from lichenin with either much higher (28%) for the former or much lower (21.6%) for the latter in comparison with their parental enzymes. The results demonstrate that directed evolution is an effective approach to improve the thermostability of a mesophilic enzyme.展开更多
Sequential methodology based on the application of three types of experimental designs was used to optimize the fermentation conditions for elastase production from mutant strain ZJUEL31410 of Bacillus licheniformis i...Sequential methodology based on the application of three types of experimental designs was used to optimize the fermentation conditions for elastase production from mutant strain ZJUEL31410 of Bacillus licheniformis in shaking flask cul- tures. The optimal cultivation conditions stimulating the maximal elastase production consist of 220 r/min shaking speed, 25 h fermentation time, 5% (v/v) inoculums volume, 25 ml medium volume in 250 ml Erlenmeyer flask and 18 h seed age. Under the optimized conditions, the predicted maximal elastase activity was 495 U/ml. The application of response surface methodology resulted in a significant enhancement in elastase production. The effects of other factors such as elastin and the growth factor (corn steep flour) on elastase production and cell growth were also investigated in the current study. The elastin had no significant effect on enzyme-improved production. It is still not clear whether the elastin plays a role as a nitrogen source or not. Corn steep flour was verified to be the best and required factor for elastase production and cell growth by Bacillus licheniformis ZJUEL31410.展开更多
基金Project supported by the National Natural Science Foundation of China (No.30571450)the Foundation for Young Professors of Jimei University of Xiamen,China
文摘Fermentation of Phaffia rhodozyma is a major method for producing astaxanthin, an important pigment with industrial and pharmaceutical application. To improve astaxanthin productivity, single factor and mixture design experiments were used to investigate the effects of nitrogen source on Phaffia rhodozyma cultivation and astaxanthin production. Results of single factor experiments showed nitrogen source could significantly affect P. rhodozyma cultivation with respect to carbon source utilization, yeast growth and astaxanthin accumulation. Further studies of mixture design experiments using (NH4)2SO4, KNO3 and beef extract as nitrogen sources indicated that the proportion of three nitrogen sources was very important to astaxanthin production. Validation experiments showed that the optimal nitrogen source was composed of 0.28 g/L (NH4)2SO4, 0.49 g/L KNO3 and 1.19 g/L beef extract. The kinetic characteristics of batch cultivation were investigated in a 5-L pH-stat fermentor. The maximum amount of biomass and highest astaxanthin yield in terms of volume and in terms of biomass were 7.71 mg/L and 1.00 mg/g, respectively.
基金Project supported by the National Natural Science Foundation of China (No. 20276064) and Natural Science Foundation of ZhejiangProvince (No. Z304076), China
文摘In order to improve the thermostability of β- 1,3-1,4-glucanase, evolutionary molecular engineering was used to evolve the β-1,3-1,4-glucanase from Bacillus subtilis ZJF-1A5. The process involves random mutation by error-prone PCR and DNA shuffling followed by screening on the filter-based assay. Two mutants, EGsl and EGs2, were found to have four and five amino acid substitutions, respectively. These substitutions resulted in an increase in melting temperature from Tm=62.5℃ for the wild-type enzyme to Tm=65.5℃ for the mutant EGsl and 67.5℃ for the mutant EGs2. However, the two mutated enzymes had opposite approaches to produce reducing sugar from lichenin with either much higher (28%) for the former or much lower (21.6%) for the latter in comparison with their parental enzymes. The results demonstrate that directed evolution is an effective approach to improve the thermostability of a mesophilic enzyme.
文摘Sequential methodology based on the application of three types of experimental designs was used to optimize the fermentation conditions for elastase production from mutant strain ZJUEL31410 of Bacillus licheniformis in shaking flask cul- tures. The optimal cultivation conditions stimulating the maximal elastase production consist of 220 r/min shaking speed, 25 h fermentation time, 5% (v/v) inoculums volume, 25 ml medium volume in 250 ml Erlenmeyer flask and 18 h seed age. Under the optimized conditions, the predicted maximal elastase activity was 495 U/ml. The application of response surface methodology resulted in a significant enhancement in elastase production. The effects of other factors such as elastin and the growth factor (corn steep flour) on elastase production and cell growth were also investigated in the current study. The elastin had no significant effect on enzyme-improved production. It is still not clear whether the elastin plays a role as a nitrogen source or not. Corn steep flour was verified to be the best and required factor for elastase production and cell growth by Bacillus licheniformis ZJUEL31410.