The amorphous I/Au composite nanofilms were prepared by low vacuum direct current sputtering(LVDCS) method. The optimized preparation technologies contain growth pressure, time, gaseous environment and annealing condi...The amorphous I/Au composite nanofilms were prepared by low vacuum direct current sputtering(LVDCS) method. The optimized preparation technologies contain growth pressure, time, gaseous environment and annealing conditions. The maximum fluorescence emission(λemmax) of I/Au nanofilms was observed at wavelength of 375 nm, and the intensity of fluorescence emission peak of annealed I/Au films was smaller than that of unannealed one due to fewer amorphous Au nanoparticles, caused by annealing treatment. In the UV-Vis absorption spectra, the intensity of UV-Vis absorption peak of annealed I/Au nanofilms is larger than that of the unannealed one. This work also developed a new way to grow I/Au composite fluorescent thin films.展开更多
The electrical and optical effects of particles on the nano aluminum film deposited by thermal evaporation was investigated. From the characterization results of scanning electron microscope(SEM), the accumulation i...The electrical and optical effects of particles on the nano aluminum film deposited by thermal evaporation was investigated. From the characterization results of scanning electron microscope(SEM), the accumulation in tens of nanometers had been observed. The current-voltage(I-V) curve of the sample indicates its nonlinear electrical characters expecting the corresponding nonlinear optical properties. By the theoretical calculation, nonlinear conduction of the carrier transportation may result from the barrier-well-barrier structure, where negative resistance and Coulomb blockade effect appears. The simulation results are approximately matched with the experimental results. By testing the fluorescence emission spectrum of the sample, peaks were found to be located at 420 and 440 nm. In addition, the full width at half maximum(FWHM) had been obviously broadened by means of adding 2, 5-diphenyloxazole(DPO). Therefore, discrete energy levels could be estimated inside those particles.展开更多
基金Funded by the National Natural Science Foundation of China(No.21676015)
文摘The amorphous I/Au composite nanofilms were prepared by low vacuum direct current sputtering(LVDCS) method. The optimized preparation technologies contain growth pressure, time, gaseous environment and annealing conditions. The maximum fluorescence emission(λemmax) of I/Au nanofilms was observed at wavelength of 375 nm, and the intensity of fluorescence emission peak of annealed I/Au films was smaller than that of unannealed one due to fewer amorphous Au nanoparticles, caused by annealing treatment. In the UV-Vis absorption spectra, the intensity of UV-Vis absorption peak of annealed I/Au nanofilms is larger than that of the unannealed one. This work also developed a new way to grow I/Au composite fluorescent thin films.
基金Supported by the 973 Program(No.2014CB932103)the 863 Program(No.2013AA032501)the National Natural Science Foundation of China(NSFC No.21676015)
文摘The electrical and optical effects of particles on the nano aluminum film deposited by thermal evaporation was investigated. From the characterization results of scanning electron microscope(SEM), the accumulation in tens of nanometers had been observed. The current-voltage(I-V) curve of the sample indicates its nonlinear electrical characters expecting the corresponding nonlinear optical properties. By the theoretical calculation, nonlinear conduction of the carrier transportation may result from the barrier-well-barrier structure, where negative resistance and Coulomb blockade effect appears. The simulation results are approximately matched with the experimental results. By testing the fluorescence emission spectrum of the sample, peaks were found to be located at 420 and 440 nm. In addition, the full width at half maximum(FWHM) had been obviously broadened by means of adding 2, 5-diphenyloxazole(DPO). Therefore, discrete energy levels could be estimated inside those particles.