Objective To better understand the pathological causes of bone loss in a space environment, including microgravity, ionizing radiation, and ultradian rhythms.Methods Sprague Dawley (SD) rats were randomly divided in...Objective To better understand the pathological causes of bone loss in a space environment, including microgravity, ionizing radiation, and ultradian rhythms.Methods Sprague Dawley (SD) rats were randomly divided into a baseline group, a control group, a hindlimb suspension group, a radiation group, a ultradian rhythms group and a combined-three-factor group. After four weeks of hindlimb suspension followed by X-ray exposure and/or ultradian rhythms, biomechanical properties, bone mineral density, histological analysis, microstructure parameters, and bone turnover markers were detected to evaluate bone loss in hindlimbs of rats.Results Simulated microgravity or combined-three factors treatment led to a significant decrease in the biomechanical properties of bones, reduction in bone mineral density, and deterioration of trabecular parameters. Ionizing radiation exposure also showed adverse impact while ultradian rhythms had no significant effect on these outcomes. Decrease in the concentration of the turnover markers bone alkaline phosphatase (bALP), osteocalcin (OCN), and tartrate-resistant acid phosphatase-5b (TRAP-Sb) in serum was in line with the changes in trabecular parameters.Conclusion Simulated microgravity is the main contributor of bone loss. Radiation also results in deleterious effects but ultradian rhythms has no significant effect. Combined-three factors treatment do not exacerbate bone loss when compared to simulated microgravity treatment alone.展开更多
Objective To investigate the function of primary cilia in regulating the cellular response to temozolomide(TMZ)and ionizing radiation(IR)in glioblastoma(GBM).Methods GBM cells were treated with TMZ or X-ray/carbon ion...Objective To investigate the function of primary cilia in regulating the cellular response to temozolomide(TMZ)and ionizing radiation(IR)in glioblastoma(GBM).Methods GBM cells were treated with TMZ or X-ray/carbon ion.The primary cilia were examined by immunostaining with Arl13 b andγ-tubulin,and the cellular resistance ability was measured by cell viability assay or survival fraction assay.Combining with cilia ablation by IFT88 depletion or chloral hydrate and induction by lithium chloride,the autophagy was measured by acridine orange staining assay.The DNA damage repair ability was estimated by the kinetic curve ofγH2 AX foci,and the DNAdependent protein kinase(DNA-PK)activation was detected by immunostaining assay.Results Primary cilia were frequently preserved in GBM,and the induction of ciliogenesis decreased cell proliferation.TMZ and IR promoted ciliogenesis in dose-and time-dependent manners,and the suppression of ciliogenesis significantly enhanced the cellular sensitivity to TMZ and IR.The inhibition of ciliogenesis elevated the lethal effects of TMZ and IR via the impairment of autophagy and DNA damage repair.The interference of ciliogenesis reduced DNA-PK activation,and the knockdown of DNA-PK led to cilium formation and elongation.Conclusion Primary cilia play a vital role in regulating the cellular sensitivity to TMZ and IR in GBM cells through mediating autophagy and DNA damage repair.展开更多
Objective miR-663 a has been reported to be downregulated by X-ray irradiation and participates in radiation-induced bystander effect via TGF-β1.The goal of this study was to explore the role of mi R-663 a during rad...Objective miR-663 a has been reported to be downregulated by X-ray irradiation and participates in radiation-induced bystander effect via TGF-β1.The goal of this study was to explore the role of mi R-663 a during radiation-induced Epithelium-to-mesenchymal transition(EMT).Methods TGF-β1 or IR was used to induce EMT.After mi R-663 a transfection,cell migration and cell morphological changes were detected and the expression levels of mi R-663 a,TGF-β1,and EMT-related factors were quantified.Results Enhancement of cell migration and promotion of mesenchymal changes induced by either TGF-β1 or radiation were suppressed by mi R-663 a.Furthermore,both X-ray and carbon ion irradiation resulted in the upregulation of TGF-β1 and downregulation of mi R-663 a,while the silencing of TGF-β1 by mi R-663 a reversed the EMT process after radiation.Conclusion Our findings demonstrate an EMT-suppressing effect by mi R-663 a via TGF-β1 in radiationinduced EMT.展开更多
Objective To investigate the fate and underlying mechanisms of G2 phase arrest in cancer cells elicited by ionizing radiation(IR).Methods Human melanoma A375 and 92-1 cells were treated with X-rays radiation or Aurora...Objective To investigate the fate and underlying mechanisms of G2 phase arrest in cancer cells elicited by ionizing radiation(IR).Methods Human melanoma A375 and 92-1 cells were treated with X-rays radiation or Aurora A inhibitor MLN8237(MLN)and/or p21 depletion by small interfering RNA(si RNA).Cell cycle distribution was determined using flow cytometry and a fluorescent ubiquitin-based cell cycle indicator(FUCCI)system combined with histone H3 phosphorylation at Ser10(p S10 H3)detection.Senescence was assessed using senescence-associated-β-galactosidase(SA-β-Gal),Ki67,andγH2AX staining.Protein expression levels were determined using western blotting.Results Tumor cells suffered severe DNA damage and underwent G2 arrest after IR treatment.The damaged cells did not successfully enter M phase nor were they stably blocked at G2 phase but underwent mitotic skipping and entered G1 phase as tetraploid cells,ultimately leading to senescence in G1.During this process,the p53/p21 pathway is hyperactivated.Accompanying p21 accumulation,Aurora A kinase levels declined sharply.MLN treatment confirmed that Aurora A kinase activity is essential for mitosis skipping and senescence induction.Conclusion Persistent p21 activation during IR-induced G2 phase blockade drives Aurora A kinase degradation,leading to senescence via mitotic skipping.展开更多
基金supported by the International Science&Technology Cooperation Program of China[No.2015DFR30940]the Science and Technology Research Project of Gansu Province[No.145RTSA012 and No.17JR5RA307]
文摘Objective To better understand the pathological causes of bone loss in a space environment, including microgravity, ionizing radiation, and ultradian rhythms.Methods Sprague Dawley (SD) rats were randomly divided into a baseline group, a control group, a hindlimb suspension group, a radiation group, a ultradian rhythms group and a combined-three-factor group. After four weeks of hindlimb suspension followed by X-ray exposure and/or ultradian rhythms, biomechanical properties, bone mineral density, histological analysis, microstructure parameters, and bone turnover markers were detected to evaluate bone loss in hindlimbs of rats.Results Simulated microgravity or combined-three factors treatment led to a significant decrease in the biomechanical properties of bones, reduction in bone mineral density, and deterioration of trabecular parameters. Ionizing radiation exposure also showed adverse impact while ultradian rhythms had no significant effect on these outcomes. Decrease in the concentration of the turnover markers bone alkaline phosphatase (bALP), osteocalcin (OCN), and tartrate-resistant acid phosphatase-5b (TRAP-Sb) in serum was in line with the changes in trabecular parameters.Conclusion Simulated microgravity is the main contributor of bone loss. Radiation also results in deleterious effects but ultradian rhythms has no significant effect. Combined-three factors treatment do not exacerbate bone loss when compared to simulated microgravity treatment alone.
基金supported by the National Natural Sciences Foundation of China[31870851 and 31471953]the Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences[2019PT320005]+1 种基金the Science and Technology Research Project of Gansu Province[145RTSA012 and 20JR5RA555]the Youth Innovation Promotion Association CAS[2021415]
文摘Objective To investigate the function of primary cilia in regulating the cellular response to temozolomide(TMZ)and ionizing radiation(IR)in glioblastoma(GBM).Methods GBM cells were treated with TMZ or X-ray/carbon ion.The primary cilia were examined by immunostaining with Arl13 b andγ-tubulin,and the cellular resistance ability was measured by cell viability assay or survival fraction assay.Combining with cilia ablation by IFT88 depletion or chloral hydrate and induction by lithium chloride,the autophagy was measured by acridine orange staining assay.The DNA damage repair ability was estimated by the kinetic curve ofγH2 AX foci,and the DNAdependent protein kinase(DNA-PK)activation was detected by immunostaining assay.Results Primary cilia were frequently preserved in GBM,and the induction of ciliogenesis decreased cell proliferation.TMZ and IR promoted ciliogenesis in dose-and time-dependent manners,and the suppression of ciliogenesis significantly enhanced the cellular sensitivity to TMZ and IR.The inhibition of ciliogenesis elevated the lethal effects of TMZ and IR via the impairment of autophagy and DNA damage repair.The interference of ciliogenesis reduced DNA-PK activation,and the knockdown of DNA-PK led to cilium formation and elongation.Conclusion Primary cilia play a vital role in regulating the cellular sensitivity to TMZ and IR in GBM cells through mediating autophagy and DNA damage repair.
基金funded by the National Natural Science Foundation of China[no.U1932208,YANG Kai]the Science and Technology Research Project of Gansu Province[no.17JR5RA307 and 145RTSA012,WANG Ju Fang]the Science and Technology Research Project of Gansu Province[no.21JR7RA108,DING Nan]
文摘Objective miR-663 a has been reported to be downregulated by X-ray irradiation and participates in radiation-induced bystander effect via TGF-β1.The goal of this study was to explore the role of mi R-663 a during radiation-induced Epithelium-to-mesenchymal transition(EMT).Methods TGF-β1 or IR was used to induce EMT.After mi R-663 a transfection,cell migration and cell morphological changes were detected and the expression levels of mi R-663 a,TGF-β1,and EMT-related factors were quantified.Results Enhancement of cell migration and promotion of mesenchymal changes induced by either TGF-β1 or radiation were suppressed by mi R-663 a.Furthermore,both X-ray and carbon ion irradiation resulted in the upregulation of TGF-β1 and downregulation of mi R-663 a,while the silencing of TGF-β1 by mi R-663 a reversed the EMT process after radiation.Conclusion Our findings demonstrate an EMT-suppressing effect by mi R-663 a via TGF-β1 in radiationinduced EMT.
基金supported by the Science and Technology Research Project of Gansu Province[20JR5RA555 and145RTSA012]the Natural Science Foundation of Shaanxi Province[2020JQ-541]+1 种基金the National Natural Science Foundation of China[31870851 and 12175289]the Youth Innovation Promotion Association CAS[2021415]
文摘Objective To investigate the fate and underlying mechanisms of G2 phase arrest in cancer cells elicited by ionizing radiation(IR).Methods Human melanoma A375 and 92-1 cells were treated with X-rays radiation or Aurora A inhibitor MLN8237(MLN)and/or p21 depletion by small interfering RNA(si RNA).Cell cycle distribution was determined using flow cytometry and a fluorescent ubiquitin-based cell cycle indicator(FUCCI)system combined with histone H3 phosphorylation at Ser10(p S10 H3)detection.Senescence was assessed using senescence-associated-β-galactosidase(SA-β-Gal),Ki67,andγH2AX staining.Protein expression levels were determined using western blotting.Results Tumor cells suffered severe DNA damage and underwent G2 arrest after IR treatment.The damaged cells did not successfully enter M phase nor were they stably blocked at G2 phase but underwent mitotic skipping and entered G1 phase as tetraploid cells,ultimately leading to senescence in G1.During this process,the p53/p21 pathway is hyperactivated.Accompanying p21 accumulation,Aurora A kinase levels declined sharply.MLN treatment confirmed that Aurora A kinase activity is essential for mitosis skipping and senescence induction.Conclusion Persistent p21 activation during IR-induced G2 phase blockade drives Aurora A kinase degradation,leading to senescence via mitotic skipping.