期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
3维非定常Navier-Stokes方程组高效全离散有限元方法研究进展
1
作者 何银年 冯新龙 《新疆大学学报(自然科学版)(中英文)》 CAS 2022年第3期257-265,共9页
针对数值求解3维非定常Navier-Stokes方程组时面临的不可压缩条件、非线性和长时间积分性等困难,讨论了能够克服这些困难的高效全离散有限元方法的研究现状和最新研究成果.此外,也阐述了求解3维非定常Navier-Stokes方程组的有限元空间... 针对数值求解3维非定常Navier-Stokes方程组时面临的不可压缩条件、非线性和长时间积分性等困难,讨论了能够克服这些困难的高效全离散有限元方法的研究现状和最新研究成果.此外,也阐述了求解3维非定常Navier-Stokes方程组的有限元空间离散解的稳定性、误差估计和高效全离散有限元解的最优误差估计. 展开更多
关键词 NAVIER-STOKES方程组 高效有限元方法 稳定性 最优误差估计
下载PDF
A defect-correction method for unsteady conduction convection problems Ⅰ:spatial discretization 被引量:4
2
作者 SI ZhiYong he yinnian WANG Kun 《Science China Mathematics》 SCIE 2011年第1期185-204,共20页
In this paper, a semi-discrete defect-correction mixed finite element method (MFEM) for solving the non-stationary conduction-convection problems in two dimension is presented. In this method, we solve the nonlinear e... In this paper, a semi-discrete defect-correction mixed finite element method (MFEM) for solving the non-stationary conduction-convection problems in two dimension is presented. In this method, we solve the nonlinear equations with an added artificial viscosity term on a finite element grid and correct this solutions on the same grid using a linearized defect-correction technique. The stability and the error analysis are derived. The theory analysis shows that our method is stable and has a good convergence property. 展开更多
关键词 unsteady conduction-convection problems mixed finite element method defect-correction stability analysis error estimates
原文传递
NONLINEAR GALERKIN METHOD FOR STEADYNONLINEAR DIFFERENTIAL EQUATIONS 被引量:1
3
作者 he yinnian LI Kaitai(Research Centre for Applied Mathematics, Xi’an Jiaotong University, Xi’an 710049, China) 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1997年第4期320-328,共9页
A nonlinear Galerkin method using spectral expansions is presented for thesteady nonlinear partial differential equations. We prove the existence, uniqueness andconvergence of the numerical solution corresponding to t... A nonlinear Galerkin method using spectral expansions is presented for thesteady nonlinear partial differential equations. We prove the existence, uniqueness andconvergence of the numerical solution corresponding to this method. Compared with the usualGalerkin method, the nonlinear Galerkin method is simpler under the same convergenceaccuracy. 展开更多
关键词 NONLINEAR GALERKIN method NONLINEAR PARTIAL differential equation convergence.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部