Grassland degradation in Altay Prefecture is of considerable concern as it is a threat that hinders the sustainable development of the local economy and the stable operation of the livestock industry.Quantitative asse...Grassland degradation in Altay Prefecture is of considerable concern as it is a threat that hinders the sustainable development of the local economy and the stable operation of the livestock industry.Quantitative assessment of the relative contributions of climate change and human activities,which are considered as the dominant triggers of grassland degradation,to grassland variation is crucial for understanding the grassland degradation mechanism and mitigating the degraded grassland in Altay Prefecture.In this paper,the Carnegie-Ames-Stanford Approach model and the Thornthwaite memorial model were adopted to simulate the actual net primary productivity(NPP_(A))and potential net primary productivity(NPP_(P))in the Altay Prefecture from 2000 to 2019.Meanwhile,the difference between potential NPP and actual NPP was employed to reflect the effects of human activities(NPP_(H))on the grassland.On this basis,we validated the viability of the simulated NPP using the Pearson correlation coefficient,investigated the spatiotemporal variability of grassland productivity,and established comprehensive scenarios to quantitatively assess the relative roles of climate change and human activities on grassland in Altay prefecture.The results indicate three main points.(1)The simulated NPP_(A) was highly consistent with the MOD17 A3 dataset in spatial distribution.(2)Regions with an increased NPP_(A) accounted for 70.53% of the total grassland,whereas 29.47% of the total grassland area experienced a decrease.At the temporal scale,the NPP_(A) presented a slightly increasing trend(0.83 g C m^(-2) yr^(-1))over the study period,while the trends of NPP_(P) and NPP_(H) were reduced(-1.31 and-2.15 g C m^(-2) yr^(-1)).(3)Compared with climate change,human activities played a key role in the process of grassland restoration,as 66.98% of restored grassland resulted from it.In contrast,inter-annual climate change is the primary cause of grassland degradation,as it influenced 55.70% of degraded grassland.These results could shed light on the mechanisms of grassland variation caused by climate change and human activities,and they can be applied to further develop efficient measures to combat desertification in Altay Prefecture.展开更多
Quantitative evaluation and driving mechanism analysis of vegetation dynamics are essential for promoting regional sustainable development.In the past 20 years,the ecological environment in Altay Prefecture has change...Quantitative evaluation and driving mechanism analysis of vegetation dynamics are essential for promoting regional sustainable development.In the past 20 years,the ecological environment in Altay Prefecture has changed significantly due to global warming.Meanwhile,with increasing human activities,the spatiotemporal pattern and driving forces of vegetation variation in the area are uncertain and difficult to accurately assess.Hence,we quantified the vegetation growth by using the Normalized Difference Vegetation Index(NDVI)on the Google Earth Engine(GEE).Then,the spatiotemporal patterns of vegetation from 2000 to 2019 were analyzed at the pixel scale.Finally,significance threshold segmentation was performed using meteorological data based on the correlation analysis results,and the contributions of climate change and human activities to vegetation variation were quantified.The results demonstrated that the vegetation coverage in Altay Prefecture is mainly concentrated in the north.The vegetation areas representing significant restoration and degradation from 2000 to 2019 accounted for 24.08% and 1.24% of Altay Prefecture,respectively.Moreover,spatial correlation analysis showed that the areas with significant correlations between NDVI and temperature,precipitation and sunlight hours accounted for 3.3%,6.9% and 20.3% of Altay Prefecture,respectively.In the significant restoration area,18.94% was dominated by multiple factors,while 3.4% was dominated by human activities,and 1.74% was dominated by climate change.Within the significant degradation area,abnormal degradation and climate change controlled 1.07% and 0.17%,respectively.This study revealed the dynamic changes of vegetation and their driving mechanisms in Altay Prefecture,and can provide scientific support for further research on life community mechanism theory and key remediation technology of mountain-water-forest-farmland-lake-grass in Altay Prefecture.展开更多
基金The Science and Technology Project of Xizang Autonomous Region(XZ201901-GA-07)The Key Research and Development Project of Sichuan Science and Technology Department(2021YFQ0042)The Science and Technology Bureau of Altay Region in Yili Kazak Autonomous Prefecture(Y99M4600AL)。
文摘Grassland degradation in Altay Prefecture is of considerable concern as it is a threat that hinders the sustainable development of the local economy and the stable operation of the livestock industry.Quantitative assessment of the relative contributions of climate change and human activities,which are considered as the dominant triggers of grassland degradation,to grassland variation is crucial for understanding the grassland degradation mechanism and mitigating the degraded grassland in Altay Prefecture.In this paper,the Carnegie-Ames-Stanford Approach model and the Thornthwaite memorial model were adopted to simulate the actual net primary productivity(NPP_(A))and potential net primary productivity(NPP_(P))in the Altay Prefecture from 2000 to 2019.Meanwhile,the difference between potential NPP and actual NPP was employed to reflect the effects of human activities(NPP_(H))on the grassland.On this basis,we validated the viability of the simulated NPP using the Pearson correlation coefficient,investigated the spatiotemporal variability of grassland productivity,and established comprehensive scenarios to quantitatively assess the relative roles of climate change and human activities on grassland in Altay prefecture.The results indicate three main points.(1)The simulated NPP_(A) was highly consistent with the MOD17 A3 dataset in spatial distribution.(2)Regions with an increased NPP_(A) accounted for 70.53% of the total grassland,whereas 29.47% of the total grassland area experienced a decrease.At the temporal scale,the NPP_(A) presented a slightly increasing trend(0.83 g C m^(-2) yr^(-1))over the study period,while the trends of NPP_(P) and NPP_(H) were reduced(-1.31 and-2.15 g C m^(-2) yr^(-1)).(3)Compared with climate change,human activities played a key role in the process of grassland restoration,as 66.98% of restored grassland resulted from it.In contrast,inter-annual climate change is the primary cause of grassland degradation,as it influenced 55.70% of degraded grassland.These results could shed light on the mechanisms of grassland variation caused by climate change and human activities,and they can be applied to further develop efficient measures to combat desertification in Altay Prefecture.
基金The Science and Technology Project of Xizang Autonomous Region(XZ201901-GA-07)The Key Research and Development Project of Sichuan Science and Technology Department(2021YFQ0042)The Science and Technology Bureau of Altay Region in Yili Kazak Autonomous Prefecture(Y99M4600AL)。
文摘Quantitative evaluation and driving mechanism analysis of vegetation dynamics are essential for promoting regional sustainable development.In the past 20 years,the ecological environment in Altay Prefecture has changed significantly due to global warming.Meanwhile,with increasing human activities,the spatiotemporal pattern and driving forces of vegetation variation in the area are uncertain and difficult to accurately assess.Hence,we quantified the vegetation growth by using the Normalized Difference Vegetation Index(NDVI)on the Google Earth Engine(GEE).Then,the spatiotemporal patterns of vegetation from 2000 to 2019 were analyzed at the pixel scale.Finally,significance threshold segmentation was performed using meteorological data based on the correlation analysis results,and the contributions of climate change and human activities to vegetation variation were quantified.The results demonstrated that the vegetation coverage in Altay Prefecture is mainly concentrated in the north.The vegetation areas representing significant restoration and degradation from 2000 to 2019 accounted for 24.08% and 1.24% of Altay Prefecture,respectively.Moreover,spatial correlation analysis showed that the areas with significant correlations between NDVI and temperature,precipitation and sunlight hours accounted for 3.3%,6.9% and 20.3% of Altay Prefecture,respectively.In the significant restoration area,18.94% was dominated by multiple factors,while 3.4% was dominated by human activities,and 1.74% was dominated by climate change.Within the significant degradation area,abnormal degradation and climate change controlled 1.07% and 0.17%,respectively.This study revealed the dynamic changes of vegetation and their driving mechanisms in Altay Prefecture,and can provide scientific support for further research on life community mechanism theory and key remediation technology of mountain-water-forest-farmland-lake-grass in Altay Prefecture.