船舶坞修作为维护和修复船舶结构的关键环节,在船舶行业中扮演着重要的角色。然而,目前船舶坞修时表面打磨过程依赖于传统的人工作业,存在着效率低、工时长、危险性高等问题。为此,提出了一种新型绳驱动式打磨机构,该机构采用四根绳索...船舶坞修作为维护和修复船舶结构的关键环节,在船舶行业中扮演着重要的角色。然而,目前船舶坞修时表面打磨过程依赖于传统的人工作业,存在着效率低、工时长、危险性高等问题。为此,提出了一种新型绳驱动式打磨机构,该机构采用四根绳索驱动打磨装置实现三自由度的运动。首先,通过拉格朗日法建立系统的动力学模型;然后在动力学模型的基础上提出了一种带有绳索张力优化项的Fuzzy-PID(proportional integral derivative)控制策略,该控制策略可以实现精确的轨迹跟踪并保证绳索处于张紧状态;最后,通过数值仿真验证所提控制策略的有效性。结果表明,和绳牵引并联机器人上常用的PID控制相比,所提控制策略控制精度提高25%,具有较高的控制精度和稳定性。本文提出的绳驱动式打磨机构及其控制策略可为大型结构件表面处理和精密制造等应用提供一定理论支持。展开更多
Based on grey neural network and particle swarm optimization algorithm,an automated stereo garage decision model is proposed to solve the problems of long waiting queue and low efficiency of automated parking garage.T...Based on grey neural network and particle swarm optimization algorithm,an automated stereo garage decision model is proposed to solve the problems of long waiting queue and low efficiency of automated parking garage.The gray neural network is used to forecast the stay time of the vehicle and particle swarm optimization algorithm is used to allocate the parking spaces in the stereo garage.The proposed stereo garage mathematical model is established on condition that vehicle arrival interval obeys Poisson distribution.The performance of stereo garage is evaluated by the average waiting time,average waiting queue length,average service time and average energy consumption of the customers.By comparing the efficiency indexes of the existing model based on near-distribution principle and the proposed model based on gray neural network and particle swarm algorithm,it is proved that the proposed model based on gray neural network and particle swarm algorithm is effective in improving the efficiency of garage operation and reducing the energy consumption of garage.展开更多
文摘船舶坞修作为维护和修复船舶结构的关键环节,在船舶行业中扮演着重要的角色。然而,目前船舶坞修时表面打磨过程依赖于传统的人工作业,存在着效率低、工时长、危险性高等问题。为此,提出了一种新型绳驱动式打磨机构,该机构采用四根绳索驱动打磨装置实现三自由度的运动。首先,通过拉格朗日法建立系统的动力学模型;然后在动力学模型的基础上提出了一种带有绳索张力优化项的Fuzzy-PID(proportional integral derivative)控制策略,该控制策略可以实现精确的轨迹跟踪并保证绳索处于张紧状态;最后,通过数值仿真验证所提控制策略的有效性。结果表明,和绳牵引并联机器人上常用的PID控制相比,所提控制策略控制精度提高25%,具有较高的控制精度和稳定性。本文提出的绳驱动式打磨机构及其控制策略可为大型结构件表面处理和精密制造等应用提供一定理论支持。
基金Natural Science Foundation of Gansu Province(No.1506RJZA073)Construction Science and Technology Project of Gansu Province(No.JK2016-1021605)
文摘Based on grey neural network and particle swarm optimization algorithm,an automated stereo garage decision model is proposed to solve the problems of long waiting queue and low efficiency of automated parking garage.The gray neural network is used to forecast the stay time of the vehicle and particle swarm optimization algorithm is used to allocate the parking spaces in the stereo garage.The proposed stereo garage mathematical model is established on condition that vehicle arrival interval obeys Poisson distribution.The performance of stereo garage is evaluated by the average waiting time,average waiting queue length,average service time and average energy consumption of the customers.By comparing the efficiency indexes of the existing model based on near-distribution principle and the proposed model based on gray neural network and particle swarm algorithm,it is proved that the proposed model based on gray neural network and particle swarm algorithm is effective in improving the efficiency of garage operation and reducing the energy consumption of garage.