期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MoSe_(2)@N, P-C composites for sodium ion battery 被引量:2
1
作者 PENG Tao LUO Yu-hong +6 位作者 TANG Lin-bo he zhen-jiang YAN Cheng MAO Jing DAI Ke-hua WU Xian-wen ZHENG Jun-chao 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期2991-3002,共12页
The conversion reaction-based anode materials of sodium ion batteries have relatively high capacity;however,the application of these materials is limited by their structural collapse due to the poor structure stabilit... The conversion reaction-based anode materials of sodium ion batteries have relatively high capacity;however,the application of these materials is limited by their structural collapse due to the poor structure stability.In this work,MoSe_(2) nanosheets were synthesized by a solvothermal method.An organic solvent was intercalated into the MoSe_(2) materials to enlarge the interlayer spacing and improve the conductivity of the material.The MoSe_(2) material was coated with an organic pyrolysis carbon and then a uniform carbon layer was formed.The surface carbon hybridization of the nanosheet materials was realized by the introduction of heteroatoms during the sintering process.The as-prepared MoSe_(2)@N,P-C composites showed a superior rate performance as it could maintain the integrity of the morphology and structure under a high current density.The composites had a discharge specific capacity of 302.4 mA·h/g after 100 cycles at 0.5 A/g,and the capacity retention rate was 84.96%. 展开更多
关键词 sodium ion battery MoSe_(2) anode materials atomic doping electrochemical performance
下载PDF
Fast-ionic conductor Li_(2.64)(Sc_(0.9)Ti_(0.1))_(2)(PO_(4))_(3) doped PVDF-HFP hybrid gel-electrolyte for lithium ion batteries
2
作者 WANG Zhen-yu LI Cong +5 位作者 HUANG Ying-de he zhen-jiang YAN Cheng MAO Jing DAI Ke-hua ZHENG Jun-chao 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期2980-2990,共11页
With increasing demand on energy density of lithium-ion battery,wide electrochemical window and safety performance are the crucial request for next generation electrolyte.Gel-electrolyte as a pioneer for electrolyte s... With increasing demand on energy density of lithium-ion battery,wide electrochemical window and safety performance are the crucial request for next generation electrolyte.Gel-electrolyte as a pioneer for electrolyte solidization development aims to solve the safety and electrochemical window problems.However,low ionic conductivity and poor physical performance prohibit its further application.Herein,a fast-ionic conductor(Li_(2.64)(Sc_(0.9)Ti_(0.1))_(2)(PO_(4))_(3))(LSTP)was added into poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)base gel-electrolyte to enhance mechanical properties and ionic conductivity.Evidences reveal that LSTP was able to weaken interforce between polymer chains,which increased the ionic conductibility and decreased interface resistance during the cycling significantly.The obtained LiFePO_(4)/hybrid gel-electrolyte/Li-metal coin cell exhibited excellent rate capacity(145 mA·h/g at 1C,95 mA·h/g at 3C,28℃)which presented a potential that can be comparable with commercialized liquid electrolyte system. 展开更多
关键词 lithium ion battery hybrid gel-electrolyte fast-ionic conductor inorganic filler electrochemical performance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部