At the present 50 to 100 microseconds are necessary for a liquid crystal to change its state from opacity to clarity; 1.14×10-5 microseconds are however proved to be enough for light to pass through a clarity liq...At the present 50 to 100 microseconds are necessary for a liquid crystal to change its state from opacity to clarity; 1.14×10-5 microseconds are however proved to be enough for light to pass through a clarity liquid crystal device. Rooted from this great difference in time, an optical adder was constructed with parallel through carry lanes (PTCL) composed of liquid crystals. Because all carries in PTCL process in parallel, the carry delay in the ternary optical computer's adder is avoided. Eliminating the carry delay in adder of ternary optical computer by physical means, the PTCL is also applicable for other types of optical adders. Moreover a light diagram of the adder and one PTCL structure are provided.展开更多
基金supported by the Doctorate Foundation of Northwestern Polytechnical Universitythe Young Scholar Training Foundation of Northwestern Polytechnical University211 Key Laboratory Fund of Shanghai University.
文摘At the present 50 to 100 microseconds are necessary for a liquid crystal to change its state from opacity to clarity; 1.14×10-5 microseconds are however proved to be enough for light to pass through a clarity liquid crystal device. Rooted from this great difference in time, an optical adder was constructed with parallel through carry lanes (PTCL) composed of liquid crystals. Because all carries in PTCL process in parallel, the carry delay in the ternary optical computer's adder is avoided. Eliminating the carry delay in adder of ternary optical computer by physical means, the PTCL is also applicable for other types of optical adders. Moreover a light diagram of the adder and one PTCL structure are provided.